Network Working Group J. Satran
Request for Comments: 3720 K. Meth
Category: Standards Track 1BM
C. Sapuntzakis

Cisco Systems

M. Chadalapaka

Hewlett-Packard Co.

E. Zeidner

1BM

April 2004

Internet Small Computer Systems Interface (iSCSI)
Status of this Memo

This document specifies an Internet standards track protocol for the
Internet community, and requests discussion and suggestions for
improvements. Please refer to the current edition of the "Internet
Official Protocol Standards™ (STD 1) for the standardization state
and status of this protocol. Distribution of this memo is unlimited.

Copyright Notice

Copyright (C) The Internet Society (2003). All Rights Reserved.

Abstract

This document describes a transport protocol for Internet Small
Computer Systems Interface (iSCSI) that works on top of TCP. The
iSCSI protocol aims to be fully compliant with the standardized SCSI
architecture model.

SCSI is a popular family of protocols that enable systems to
communicate with 1/0 devices, especially storage devices. SCSI
protocols are request/response application protocols with a common
standardized architecture model and basic command set, as well as
standardized command sets for different device classes (disks, tapes,
media-changers etc.).

As system interconnects move from the classical bus structure to a
network structure, SCSI has to be mapped to network transport
protocols. [IP networks now meet the performance requirements of fast
system interconnects and as such are good candidates to "carry" SCSI.

Satran, et al. Standards Track [Page 1]

RFC 3720 iSCSI

Table of Contents

April 2004

1. Introduction. . 9
2. Definitions and Acronyms. 10
2.1. Definitions. 10
2.2. Acronyms . 14
2.3. Conventions. . . 16
2.3.1. Word Rule . 16
2.3.2. Half-Word Rule . 17
2.3.3. Byte Rule. 17
3. Overview. - 17
3.1. SCSI Concepts . . 17
3.2. iSCSI Concepts and Functlonal OverV|ew . 18
3.2.1. Layers and Sessions. . . - 19
3.2.2. Ordering and 1SCSI Numberlng . 19
3.2.2.1. Command Numbering and
Acknowledging . . 20
3.2.2.2. Response/Status Numberlng and
Acknowledging . - - 23
3.2.2.3. Data Sequencing 24
3.2.3. iSCSI Login. . . . 24
3.2.4. iSCSI Full Feature Phase . - - 25
3.2.4.1. Command Connection Alleglance - - 26
3.2.4.2. Data Transfer Overview. . . 27
3.2.4.3. Tags and Integrity Checks . 28
3.2.4.4. Task Management . - - 28
3.2.5 iSCS1 Connection Termination 29
3.2.6 iSCSI Names. e e e o e o 29
3.2.6.1. |SCSI Name Properties . 30
3.2.6.2. iSCSI Name Encoding . 31
3.2.6.3. iSCSI Name Structure. . . 32
3.2.6.3.1. Type "ign." (|SCSI
Qualified Name) . 32
3.2.6.3.2. Type "eui." (IEEE
EUI-64 format). 34
3.2.7. Persistent State . - 34
3.2.8. Message Synchronization and Steerlng - 35
3.2.8.1. Sync/Steering and iSCSI1 PDU
Length . - - 36
3.3. iSCSI Session Types. 36
3.4. SCSI to 1SCS1 Concepts Mapplng Model 37
3.4.1. iSCS1 Architecture Model 37
3.4.2. SCS1 Architecture Model. 39
3.4.3. Consequences of the Model. . 41
3.4.3.1. I_T Nexus State . 42
3.5. Request/Response Summary - - 42
3.5.1. Request/Response Types Carrylng SCSI Payload 43
3.5.1.1. SCS1-Command . 43
Satran, et al. Standards Track [Page 2]

RFC 3720 iSCSI April 2004

Satran,

3.5.1.2 SCS1-Response -
3.5.1.3. Task Management Functlon Request
3.5.1.4. Task Management Function Response
3.5.1.5 SCSI Data-Out and SCSI Data-In.
3.5.1.6. Ready To Transfer (R2T) .
3.5.2. Requests/Responses carrying SCSI and |SCSI
Payload
3.5.2.1. Asynchronous Message - - -
3.5.3. Requests/Responses Carrying iSCSI Only
Payload.

3.5.3.1. Text Request and Text Response.
. Login Request and Login Response.

Logout Request and Response .

SNACK Request .

Reject. . .

NOP-Out Request and NOP In

Response .

SCS1 Mode Parameters for i1SCSI.

Login and Full Feature Phase Negotlatlon

5.1. Text Format. -

5.2. Text Mode Negotlatlon

WWwWwww
SRGRGRRY
OUAWN

5.2.1. List negotiations.
5.2.2. Simple-value Negotlatlons
5.3. Login Phase. . .
5.3.1. Login Phase Start .
5.3.2. iSCSI Security Negotlatlon - -
5.3.3. Operational Parameter Negotiation Durlng
the Login Phase. .
5.3.4. Connection Relnstatement - -
5.3.5. Session Reinstatement, Closure and Tlmeout.
5 5.3.5.1. Loss of Nexus
Notification.
5.3.6. Session Continuation and Failure . . .
5.4. Operational Parameter Negotiation Outside the Logln
Phase.
iSCSI Error Handling and Recovery .
6.1. Overview . . .
6.1.1. Background .
6.1.2. Goals. .
6.1.3 Protocol Features and State Expectatlons .
6.1.4 Recovery Classes . . .
6.1.4.1. Recovery W|th|n command .
6.1.4.2 Recovery Within-connection.
6.1.4.3. Connection Recovery .
6.1.4.4. Session Recovery.
6.1.5. Error Recovery Hierarchy .
6.2. Retry and Reassign in Recovery .
6.2.1. Usage of Retry .

43
44
44
44
45

46
46

46
46
47
47
48
48

48
48
48
50
53
56
56
57
60
62

63
64
64

65
65

66
67
67
67
67
68
69
69
70
71
72
72
74
74

et al. Standards Track [Page 3]

RFC 3720

Satran,

[e2Ne))
Hw

@@0)@0)0703030)

iSCSI April 2004

6.2.2. Allegiance Reassignment.
Usage OFf Reject PDU in Recovery.

Connection Timeout Management. -
6.4.1. Timeouts on Transport Exceptlon Events -
6.4.2. Timeouts on Planned Decommissioning.

Implicit Termination of Tasks.
Format Errors.

Digest Errors.

Sequence Errors.

SCS1 Timeouts. .
Negotiation Fallures .
Protocol Errors.

Connection Failures.

Session Errors .

State Transitions .

7.1.

7.2.

7.3.

Standard Connectlon State Dlagrams .

7.1.1. State Descriptions for In|t|ators and
Targets.

7.1.2. State TranS|t|on Descrlptlons for Inltlators
and Targets.

7.1.3. Standard Connection State Dlagram for an
Initiator.

7.1.4. Standard Connectlon State Dlagram for a
Target .

Connection Cleanup State Dlagram for Inltlators and

Targets. -

7.2.1. State Descriptions for Initiators and
Targets.

7.2.2. State TranS|t|on Descrlptlons for In|t|ators
and Targets.

Session State Diagrams . -

7.3.1. Session State Dlagram for an Inltlator -

7.3.2. Session State Diagram for a Target .

7.3.3 State Descriptions for Initiators and
Targets.

7.3.4. State TranS|t|on Descrlptlons for In|t|ators

and Targets.

Security Considerations .

8.1.
8.2.

8.3.

iSCSI Security Mechanlsms
In-band Initiator-Target Authentlcatlon

8.2.1. CHAP Considerations.

8.2.2. SRP Considerations .

IPsec. e e e e e e e e e e e e e e e e
8.3.1. Data Integrity and Authentication.
8.3.2. Confidentiality. .

8.3.3. Policy, Security ASSOC|at|ons and

Cryptographlc Key Management -

Notes to Implementers .

et al.

75
76
76
77
77
77
78
78
80
81
81
82
82
83
84
84

84

85

88

90

92

94

94
95
95
96

97

98

99
100
100
101
103
104
104
105

105
106

Standards Track [Page 4]

RFC 3720

10.

Satran,

[(e (e N{o}{o)
O WN

i1SCSI
10.1.
10.2.

10.3.

10.4.

et al.

iSCSI April 2004

Multiple Network Adapters.

9.1.1. Conservative Reuse of ISIDs - -

9.1.2. iSCSI Name, ISID, and TPGT Use . . .
Autosense and Auto Contingent Allegiance (ACA)
iSCSI Timeouts . . -
Command Retry and Cleanlng OId Command Instances .
Synch and Steering Layer and Performance . .
Considerations for State-dependent Devices and
Long-lasting SCSI1 Operations . -

9.6.1. Determining the Proper ErrorRecoveryLevel

PDU Formats .

iSCSI PDU Length and Padding . . .

PDU Template, Header, and Opcodes.

10.2.1. Basic Header Segment (BHS)
|

10.2.1.1.

10.2.1.2. Opcode - - .

10.2.1.3. Final (F) blt .

10.2.1.4. Opcode-specific Flelds

10.2.1.5. TotalAHSLength. .

10.2.1.6. DataSegmentLength .

10.2.1.7. LUN . . .

10.2.1.8. Initiator Task Tag
10.2.2. Additional Header Segment (AHS)

10.2.2.1. AHSType . .

10.2.2.2. AHSLength . .

10.2.2.3. Extended CDB AHS - -

10.2.2.4_. Bidirectional Expected Read Data

Length AHS. - -
10.2.3. Header Digest and Data Dlgest
10.2.4. Data Segment . - - . - -
SCS1 Command .

10.3.1. Flags and Task Attrlbutes (byte 1)
10.3.2. CmdSN - Command Sequence Number.
10.3.3. ExpStatSN.

10.3.4. Expected Data Transfer Length .
10.3.5. CDB - SCSI Command Descriptor Block
10.3.6. Data Segment - Command Data. -
SCS1 Response. . .

10.4.1. Flags (byte 1)

10.4.2. Status .

10.4.3. Response .

10.4.4. SNACK Tag. .

10.4.5. Residual Count . e e e e o
10.4.6. Bidirectional Read Residual Count.
10.4.7. Data Segment - Sense and Response Data

Segment.
10.4.7.1. Senselength .
10.4.7.2. Sense Data.

. 106
. 107
. 107
. 109
. 109
. 110
. 110

. 111
. 112
. 112
. 113
. 113
. 114
. 115
. 115
. 116
. 116
. 116
. 116
. 116
. 117
. 117
. 117
. 117
. 118

. 118
. 118
. 119
. 119
. 120
. 120
. 120
. 121
. 121
. 121
. 122
. 123
. 123
. 124
. 125
. 125
. 125

. 125
. 126
. 126

Standards Track [Page 5]

RFC 3720

Satran,

10.5.

10.6.

10.7.

10.8.

10.9.

10.10.

10.11.

et al.

iSCSlI April 2004
10.4.8. ExpDataSN. - . 127
10.4.9. StatSN - Status Sequence Number - - - - 127
10.4.10. ExpCmdSN - Next Expected CmdSN from thls
Initiator. - - 128
10.4.11. MaxCmdSN - MaX|mum CmdSN from thls Initiator 128
Task Management Function Request . . 129
10.5.1. Function 129
10.5.2. TotaIAHSLength and DataSegmentLength . 132
10.5.3. LUN. . . 132
10.5.4. Referenced Task Tag . 132
10.5.5. RefCmdSN . . 132
10.5.6. ExpDataSN. . . 133
Task Management Function Response . 134
10.6.1. Response . - . 134
10.6.2. Task Management Actlons on Task Sets . . 136
10.6.3. TotalAHSLength and DataSegmentLength . . 137
SCS1 Data- Out & SCSI Data-In . e - . . 137
10.7.1. F (Final) Bit. . . . 139
10.7.2. A (Acknowledge) Blt . 139
10.7.3. Flags (byte 1) . . 140
10.7.4. Target Transfer Tag and LUN - 140
10.7.5. DataSN 141
10.7.6. Buffer Offset . 141
10.7.7. DataSegmentLength. . 141
Ready To Transfer (R2T). 142
10.8.1. TotaIAHSLength and DataSegmentLength . . 143
10.8.2. R2TSN. . . 143
10.8.3. StatSN 144
10.8.4. Desired Data Transfer Length and Buffer
Offset . . . e e e e e e e . 144
10.8.5. Target Transfer Tag . 144
Asynchronous Message - 145
10.9.1. AsyncEvent . . 146
10.9.2. AsyncVCode . . 147
10.9.3. LUN. . . . e e e e e . 147
10.9.4. Sense Data and |SCSI Event Data. . 148
10.9.4.1. SenseLength . . 148
Text Request - - - - - . 149
10.10.1. (Flnal) Blt - - . 150
10.10.2. C (Continue) Bit . . 150
10.10.3. Initiator Task Tag - . 150
10.10.4. Target Transfer Tag. . 150
10.10.5. Text . .- . 151
Text Response - - . 152
10.11.1. F (Final) Blt . . 152
10.11.2. C (Continue) Bit . . . 153
10.11.3. Initiator Task Tag - . 153
10.11.4. Target Transfer Tag. . 153

Standards Track

[Page 6]

RFC 3720

Satran,

10.12.

10.13.

10.14.

10.15.

10.16.

10.17.

et al.

iSCSI

10.11.5 StatSN . . .

10.11.6 Text Response Data -

Login Request. - -

10.12.1. (TranS|t) Blt

10.12.2 C (Continue) Bit .

10.12.3 CSG and NSG.

10.12.4. Version. e e e e
10.12.4.1. Version-max.
10.12.4.2. Version-min.

10.12.5. ISID .

10.12.6. TSIH . .

10.12.7. Connection ID - CID

10.12.8. CmdSN. . .

10.12.9. ExpStatSN.

10.12.10. Login Parameters .

Login Response .

10.13.1. Version- max

10.13.2. Version-active .

10.13.3. TSIH . .

10.13.4. StatSN . . .

10.13.5. Status Class and Status Detall

10.13.6. T (Transit) Bit.

10.13.7. C (Continue) Bit .

10.13.8. Login Parameters .

Logout Request . . -
10.14.1. Reason Code

10.14.2. TotaIAHSLengtn and DataSegmentLength :

10.14.3. CID. . . .

10.14.4. ExpStatSN. .

10.14.5. Implicit termlnatlon of tasks
Logout Response.

10.15.1 Response . . .
10.15.2 TotaIAHSLength and DataSegmentLength .
10.15.3 Time2Wait.

10.15.4 Time2Retain.

SNACK Request.

10.16.1. Type . . -

10.16.2. Data Acknowledgement .

10.16.3 Resegmentation . . .

10.16.4 Initiator Task Tag - .
10.16.5 Target Transfer Tag or SNACK Tag -
10.16.6 BegRun . . - - . .
10.16.7. RunLength.

Reject . .

10.17.1. Reason - - -

10.17.2. DataSN/RZTSN ..

10.17.3. StatSN, ExpCmdSN and MamedSN
10.17.4. Complete Header of Bad PDU .

Standards Track

April 2004

. 154
. 154
. 154
. 155
. 155
. 156
. 156
. 156
. 156
. 157
. 158
. 158
. 159
. 159
. 159
. 160
. 160
. 161
. 161
. 161
. 161
. 164
. 164
. 164
. 165
. 167
. 168
. 168
. 168
. 168
. 169
. 170
. 170
. 170
. 170
. 171
. 172
. 173
. 173
. 174
. 174
. 174
. 174
. 175
. 176
. 177
. 177
. 177

[Page 7]

RFC 3720 iSCSI

11.

12.

13.

Satran,

10.18. NOP-Qut.
10.18.1. Initiator Task Tag -
10.18.2. Target Transfer Tag-
10.18.3. Ping Data. - -

10.19. NOP-In
10.19.1. Target Transfer Tag.
10.19.2. StatSN . .-
10.19.3. LUN

iSCSI Security Text Keys-and Authentlcatlon Methods :

11.1. AuthMethod . . .
11.1.1. Kerberos . .
11.1.2. Simple Public- Key Mechanlsm (SPKM)
11.1.3. Secure Remote Password (SRP) .

11.1.4. Challenge Handshake Authentlcatlon Protocol

(CHAP) .
Login/Text Operational Text Keys
12.1. HeaderDigest and DataDlgest
12.2. MaxConnections . - - -
12.3. SendTargets.
12.4. TargetName .
12.5. InitiatorName.
12.6. TargetAlias.
12.7. InitiatorAlias .
12.8. TargetAddress. .
12.9. TargetPortaIGroupTag -

12.10. InitialR2T .

12.11. ImmediateData. . .

12.12. MaxRechataSegmentLength -

12.13. MaxBurstLength .

12.14. FirstBurstlLength .

12.15. DefaultTime2Wait . .

12.16. DefaultTime2Retain .

12.17. MaxOutstandingR2T.

12.18. DataPDUInOrder .

12.19. DataSequencelnOrder.

12.20. ErrorRecoverylLevel

12.21. SessionType. - -
12.22. The Private or Publlc ExtenS|on Key Format -
IANA Considerations .

13.1. Naming ReqU|rements -

13.2. Mechanism Specification ReqU|rements .

13.3. Publication Requirements .

13.4. Security Requirements.

13.5. Registration Procedure .

April 2004

. 178
. 179
. 179
. 179
. 180
. 181
. 181
. 181
. 181
. 182
. 184
. 184
. 185

. 186
. 187
. 188
. 190
. 191
. 191
. 192
. 192
. 193
. 193
. 194
. 194
. 195
. 196
. 196
. 197
. 197
. 198
. 198
. 198
. 199
. 199
. 200
. 200
. 201
. 203
. 203
. 203
. 203
. 204

13.5.1. Present the iSCél-eiteneien-iieﬁ fo-tﬁe-

Community.

13.5.2. iSCSI extension item review and IESG

approval

et al. Standards Track

. 204

. 204

[Page 8]

RFC 3720 iSCSI April 2004

13.5.3. IANA Registration. . . . 204
13.5.4. Standard iSCSI extenS|on |tem Iabel format . 204
13.6. I1ANA Procedures for Registering iSCSI extension items. 205

References. o o o . o o o < 4 < o o205
Appendix A. Sync and Steering with Fixed Interval Markers 209
Al Markers At Fixed Intervals 209
A.2. Initial Marker-less Interval 210
A.3. Negotiation. . . 2 [0
A.3.1. OFMarker IFMarker 2 [0

A.3.2. OFMarkint, IFMarklnt . . . _ . . . _ 211

Appendix B. Examples . . . 2 24
B.1. Read Operation Example 2 24
B.2. Write Operation Example. 213
B.3. R2TSN/DataSN Use Examples. 214
B.4. CRC Examples . . . 2 4
Appendix C Login Phase Examples 2 R
Appendix D. SendTargets Operation. . . . 229
Appendix E. Algorithmic Presentation of Error Recovery Classes . 233
E.L1. General Data Structure and Procedure Description . . . 233
E.2. Within-command Error Recovery Algorithms 234
E.2.1. Procedure Descriptions 234

E.2.2. Initiator Algorithms _ 235

E.2.3. Target Algorithms. . . - e e o .. .2 237

E.3. Within-connection Recovery Algorlthms - - - - - - . . 240
E.3.1. Procedure Descriptions 240

E.3.2. Initiator Algorithms 241

E.3.3. Target Algorithms. 243

E.4. Connection Recovery Algorithms _ _ 243
E.4_.1. Procedure Descriptions 243

E.4.2. Initiator Algorithms 244

E.4.3. Target Algorithms. . . . - . 246

Appendix F. Clearing Effects of Various Events on Targets - - . 249
F.1. Clearing Effects on iSCSI Objects. 249
F.2. Clearing Effects on SCSI Objects - - - - < - - 253
Acknowledgements. - .- v
Authors” Addresses. . . e e e e e e e e e i e i e i e 256
Full Copyright Statement LY 4

1. Introduction

The Small Computer Systems Interface (SCSI) is a popular family of
protocols for communicating with 1/0 devices, especially storage
devices. SCSI is a client-server architecture. Clients of a SCSI

interface are called "initiators". Initiators issue SCSI "commands"
to request services from components, logical units of a server known
as a "target. A "SCSI transport' maps the client-server SCSI

protocol to a specific interconnect. An Initiator is one endpoint of
a SCSI transport and a target is the other endpoint.

Satran, et al. Standards Track [Page 9]

RFC 3720 iSCSI April 2004

The SCSI protocol has been mapped over various transports, including
Parallel SCSI, IPI, 1EEE-1394 (firewire) and Fibre Channel. These
transports are 1/0 specific and have limited distance capabilities.

The i1SCSI protocol defined in this document describes a means of
transporting SCSI packets over TCP/IP (see [RFC791], [RFC793],
[RFC1035], [RFC1122]), providing for an interoperable solution which
can take advantage of existing Internet infrastructure, Internet
management facilities, and address distance limitations.

2. Definitions and Acronyms
2.1. Definitions

- Alias: An alias string can also be associated with an iSCSI Node.
The alias allows an organization to associate a user-friendly
string with the 1SCSI Name. However, the alias string is not a
substitute for the 1SCSI Name.

- CID (Connection ID): Connections within a session are identified by
a connection ID. It is a unique ID for this connection within the
session for the iInitiator. It is generated by the initiator and
presented to the target during login requests and during logouts
that close connections.

- Connection: A connection is a TCP connection. Communication
between the initiator and target occurs over one or more TCP
connections. The TCP connections carry control messages, SCSI
commands, parameters, and data within iSCSI Protocol Data Units
(iSCS1 PDUs).

- USCSI Device: A SCSI Device using an iSCSI service delivery
subsystem. Service Delivery Subsystem is defined by [SAM2] as a
transport mechanism for SCSI commands and responses.

- ISCSI Initiator Name: The i1SCSI Initiator Name specifies the
worldwide unique name of the initiator.

- ISCSI Initiator Node: The "initiator'”. The word "initiator" has
been appropriately qualified as either a port or a device in the
rest of the document when the context is ambiguous. All
unqualified usages of "initiator” refer to an initiator port (or
device) depending on the context.

- 1SCSI Layer: This layer builds/receives iSCSI PDUs and

relays/receives them to/from one or more TCP connections that form
an initiator-target ''session'.

Satran, et al. Standards Track [Page 10]

RFC 3720 iSCSI April 2004

- 1SCSI Name: The name of an iSCSI initiator or iSCSI target.

- 1SCSI Node: The iSCSI Node represents a single 1SCSI initiator or
iSCSI target. There are one or more iSCSI Nodes within a Network
Entity. The iSCSI Node is accessible via one or more Network
Portals. An iSCSI Node is identified by its iSCSI Name. The
separation of the iSCSI Name from the addresses used by and for the
iSCSI Node allows multiple iSCSI Nodes to use the same address, and
the same iSCSI Node to use multiple addresses.

- 1SCSI Target Name: The i1SCSI Target Name specifies the worldwide
unique name of the target.

- 1SCSI Target Node: The '"target'.

- 1SCSI Task: An iSCSI task is an iSCSI request for which a response
is expected.

- ISCSI Transfer Direction: The iSCSI transfer direction is defined
with regard to the initiator. Outbound or outgoing transfers are
transfers from the initiator to the target, while inbound or
incoming transfers are from the target to the initiator.

- ISID: The initiator part of the Session ldentifier. It is
explicitly specified by the initiator during Login.

- I_T nexus: According to [SAM2], the I_T nexus is a relationship
between a SCSI1 Initiator Port and a SCSI Target Port. For i1SCSI,
this relationship is a session, defined as a relationship between
an ISCSI Initiator’s end of the session (SCSI Initiator Port) and
the iSCSI Target’s Portal Group. The 1_T nexus can be identified
by the conjunction of the SCSI port names; that is, the I_T nexus
identifier is the tuple (iSCSI Initiator Name + ”,i,”+ ISID, iSCSI
Target Name + ”,t,”+ Portal Group Tag).-

- Network Entity: The Network Entity represents a device or gateway
that is accessible from the IP network. A Network Entity must have
one or more Network Portals, each of which can be used to gain
access to the IP network by some iSCSI Nodes contained in that
Network Entity.

- Network Portal: The Network Portal is a component of a Network
Entity that has a TCP/IP network address and that may be used by an
iSCS1 Node within that Network Entity for the connection(s) within
one of its iSCSI sessions. A Network Portal in an initiator is
identified by its IP address. A Network Portal in a target is
identified by its IP address and its listening TCP port.

Satran, et al. Standards Track [Page 11]

RFC 3720 iSCSI April 2004

- Originator: In a negotiation or exchange, the party that initiates
the negotiation or exchange.

- PDU (Protocol Data Unit): The initiator and target divide their
communications into messages. The term "iSCSI protocol data unit”
(iSCSI PDU) is used for these messages.

- Portal Groups: iSCSI supports multiple connections within the same
session; some implementations will have the ability to combine
connections in a session across multiple Network Portals. A Portal
Group defines a set of Network Portals within an iSCSI Network
Entity that collectively supports the capability of coordinating a
session with connections spanning these portals. Not all Network
Portals within a Portal Group need participate in every session
connected through that Portal Group. One or more Portal Groups may
provide access to an iSCSI Node. Each Network Portal, as utilized
by a given iSCSI Node, belongs to exactly one portal group within
that node.

- Portal Group Tag: This 16-bit quantity identifies a Portal Group
within an iSCSI Node. All Network Portals with the same portal
group tag in the context of a given iISCSI Node are in the same
Portal Group.

- Recovery R2T: An R2T generated by a target upon detecting the loss
of one or more Data-Out PDUs through one of the following means: a
digest error, a sequence error, or a sequence reception timeout. A
recovery R2T carries the next unused R2TSN, but requests all or
part of the data burst that an earlier R2T (with a lower R2TSN) had
already requested.

- Responder: In a negotiation or exchange, the party that responds to
the originator of the negotiation or exchange.

- SCSI Device: This is the SAM2 term for an entity that contains one
or more SCSI ports that are connected to a service delivery
subsystem and supports a SCSI application protocol. For example, a
SCSI1 Initiator Device contains one or more SCSI Initiator Ports and
zero or more application clients. A Target Device contains one or
more SCSI Target Ports and one or more device servers and
associated logical units. For iSCSI, the SCSI Device is the
component within an iSCSI Node that provides the SCSI
functionality. As such, there can be at most, one SCSI Device
within a given iSCSI Node. Access to the SCSI Device can only be
achieved in an iSCSI normal operational session. The SCSI Device
Name is defined to be the iSCSI Name of the node.

Satran, et al. Standards Track [Page 12]

RFC 3720 iSCSI April 2004

- SCSI Layer: This builds/receives SCSI CDBs (Command Descriptor
Blocks) and relays/receives them with the remaining command execute
[SAM2] parameters to/from the 1SCSI Layer.

- Session: The group of TCP connections that link an initiator with a
target form a session (loosely equivalent to a SCSI I-T nexus).
TCP connections can be added and removed from a session. AcCross
all connections within a session, an initiator sees one and the
same target.

- SCSI Initiator Port: This maps to the endpoint of an iSCSI normal
operational session. An iSCSI normal operational session is
negotiated through the login process between an iSCSI initiator
node and an iSCSI target node. At successful completion of this
process, a SCSI Initiator Port is created within the SCSI Initiator
Device. The SCSI Initiator Port Name and SCSI Initiator Port
Identifier are both defined to be the iSCSI Initiator Name together
with (a) a label that identifies it as an initiator port
name/identifier and (b) the ISID portion of the session identifier.

- SCSI Port: This is the SAM2 term for an entity in a SCSI Device
that provides the SCSI functionality to interface with a service
delivery subsystem. For iSCSI, the definition of the SCSI
Initiator Port and the SCSI Target Port are different.

- SCSI Port Name: A name made up as UTF-8 [RFC2279] characters and
includes the iSCSI Name + ”i” or "t~ + ISID or Portal Group Tag.

- SCSI Target Port: This maps to an 1SCSI Target Portal Group.

- SCSI Target Port Name and SCSI Target Port ldentifier: These are
both defined to be the iSCSI Target Name together with (a) a label
that identifies It as a target port name/identifier and (b) the
portal group tag.

- SSID (Session ID): A session between an iSCSI initiator and an
iSCSI target is defined by a session ID that is a tuple composed of
an initiator part (ISID) and a target part (Target Portal Group
Tag)- The ISID is explicitly specified by the initiator at session
establishment. The Target Portal Group Tag is implied by the
initiator through the selection of the TCP endpoint at connection
establishment. The TargetPortalGroupTag key must also be returned
by the target as a confirmation during connection establishment
when TargetName is given.

- Target Portal Group Tag: A numerical identifier (16-bit) for an
iSCSI Target Portal Group.

Satran, et al. Standards Track [Page 13]

RFC 3720 iSCSI April 2004

- TSIH (Target Session ldentifying Handle): A target assigned tag for
a session with a specific named initiator. The target generates it

during session establishment. Its internal format and content are
not defined by this protocol, except for the value 0 that is
reserved and used by the initiator to indicate a new session. It

is given to the target during additional connection establishment
for the same session.

2.2_. Acronyms

Acronym Definition

3DES Triple Data Encryption Standard
ACA Auto Contingent Allegiance

AEN Asynchronous Event Notification
AES Advanced Encryption Standard

AH Additional Header (not the IPsec AH!)
AHS Additional Header Segment

API Application Programming Interface
ASC Additional Sense Code

ASCI1 American Standard Code for Information Interchange
ASCQ Additional Sense Code Qualifier
BHS Basic Header Segment

CBC Cipher Block Chaining

CD Compact Disk

CDB Command Descriptor Block

CHAP Challenge Handshake Authentication Protocol
CID Connection ID

co Connection Only

CRC Cyclic Redundancy Check

CRL Certificate Revocation List

CSG Current Stage

CSM Connection State Machine

DES Data Encryption Standard

DNS Domain Name Server

DOl Domain of Interpretation

DVD Digital Versatile Disk

ESP Encapsulating Security Payload

EUI Extended Unique ldentifier

FFP Full Feature Phase

FFPO Full Feature Phase Only

FIM Fixed Interval Marker

Gbps Gigabits per Second

HBA Host Bus Adapter

HMAC Hashed Message Authentication Code
1T Initiator_Target

I T L Initiator_Target_LUN

1ANA Internet Assigned Numbers Authority

Satran, et al. Standards Track [Page 14]

RFC 3720

ID
IDN
IEEE
IETF
IKE
170
10
IP
IPsec
1Pv4
1Pv6
ION
ISID
ITN
ITT
KRB5
LFL
LTDS
LO
LU
LUN
MAC
NA
NIC
NOP
NSG
0S
PDU
PK1
R2T
R2TSN
RDMA
RFC
SAM
SAM2
SAN
SCSI
SN
SNACK

SPKM
SRP
SSID
SwW
TCB
TCP
TPGT
TSIH

Satran,

et al.

iSCSI

Identifier

Internationalized Domain Name
Institute of Electrical & Electronics Engineers
Internet Engineering Task Force
Internet Key Exchange

Input - Output

Initialize Only

Internet Protocol

Internet Protocol Security
Internet Protocol Version 4
Internet Protocol Version 6

iSCSI Qualified Name

Initiator Session ID

iSCSI Target Name

Initiator Task Tag

Kerberos V5

Lower Functional Layer
Logical-Text-Data-Segment

Leading Only

Logical Unit

Logical Unit Number

Message Authentication Codes

Not Applicable

Network Interface Card

No Operation

Next Stage

Operating System

Protocol Data Unit

Public Key Infrastructure

Ready To Transfer

Ready To Transfer Sequence Number
Remote Direct Memory Access
Request For Comments

SCSI Architecture Model

SCSI Architecture Model - 2
Storage Area Network

Small Computer Systems Interface
Sequence Number

Selective Negative Acknowledgment - also
Sequence Number Acknowledgement for data
Simple Public-Key Mechanism
Secure Remote Password

Session 1D

Session Wide

Task Control Block

Transmission Control Protocol
Target Portal Group Tag

Target Session ldentifying Handle

Standards Track

April 2004

[Page 15]

RFC 3720 iSCSI April 2004

TTT Target Transfer Tag

UFL Upper Functional Layer

ULP Upper Level Protocol

URN Uniform Resource Names [RFC2396]
UTF Universal Transformation Format
WG Working Group

2.3. Conventions

In examples, "1->" and "T->" show 1SCSI PDUs sent by the initiator
and target respectively.

The key words "MUST", "MUST NOT'", "REQUIRED'", "SHALL"™, *"SHALL NOT",
"'SHOULD"™, "SHOULD NOT', "RECOMMENDED"™, "MAY'", and "OPTIONAL"™ in this
document are to be interpreted as described in BCP 14 [RFC2119].

iSCSI messages - PDUs - are represented by diagrams as in the
following example:

Byte/ 0 | 1 | 2 | 3 |
/ | | | |
|]0O1234567|]01234567|01234567|012345¢6 7]
o o o o +

O] Basic Header Segment (BHS) |
Sy Sy Sy Sy +
+] |
o~ o~ o~ o~ +

The diagrams include byte and bit numbering.

The following representation and ordering rules are observed in this
document:

- Word Rule
- Half-word Rule
- Byte Rule

2.3.1. Word Rule

A word holds four consecutive bytes. Whenever a word has numeric
content, it is considered an unsigned number in base 2 positional
representation with the lowest numbered byte (e.g., byte 0) bit O
representing 2**31 and bit 1 representing 2**30 through lowest
numbered byte + 3 (e.g., byte 3) bit 7 representing 2**0.

Decimal and hexadecimal representation of word values map this
representation to decimal or hexadecimal positional notation.

Satran, et al. Standards Track [Page 16]

RFC 3720 iSCSI April 2004

2.3.2. Half-Word Rule

A half-word holds two consecutive bytes. Whenever a half-word has
numeric content it is considered an unsigned number in base 2
positional representation with the lowest numbered byte (e.g., byte
0), bit 0 representing 2**15 and bit 1 representing 2**14 through
lowest numbered byte + 1 (e.g., byte 1), bit 7 representing 2**0.

Decimal and hexadecimal representation of half-word values map this
representation to decimal or hexadecimal positional notation.

2.3.3. Byte Rule

For every PDU, bytes are sent and received in increasing numbered
order (network order).

Whenever a byte has numerical content, It is considered an unsigned
number in base 2 positional representation with bit O representing
2**7 and bit 1 representing 2**6 through bit 7 representing 2**0.

3. Overview
3.1. SCSI1 Concepts

The SCSI Architecture Model-2 [SAM2] describes in detail the
architecture of the SCS1 family of 1/0 protocols. This section
provides a brief background of the SCSI architecture and is intended
to familiarize readers with its terminology.

At the highest level, SCSI is a family of interfaces for requesting
services from 1/0 devices, including hard drives, tape drives, CD and
DVD drives, printers, and scanners. In SCSI terminology, an
individual 1/0 device is called a "logical unit"” (LU).

SCSI1 i1s a client-server architecture. Clients of a SCSI interface

are called "initiators”™. Initiators issue SCSI "commands"™ to request
services from components, logical units, of a server known as a
"target". The "device server" on the logical unit accepts SCSI

commands and processes them.

A "SCSI1 transport” maps the client-server SCSI protocol to a specific
interconnect. Initiators are one endpoint of a SCSI transport. The
"target" is the other endpoint. A target can contain multiple
Logical Units (LUs). Each Logical Unit has an address within a
target called a Logical Unit Number (LUN).

A SCSI task is a SCSI command or possibly a linked set of SCSI
commands. Some LUs support multiple pending (queued) tasks, but the

Satran, et al. Standards Track [Page 17]

RFC 3720 iSCSI April 2004

queue of tasks is managed by the logical unit. The target uses an
initiator provided "task tag" to distinguish between tasks. Only one
command in a task can be outstanding at any given time.

Each SCS1 command results in an optional data phase and a required

response phase. In the data phase, information can travel from the
initiator to target (e.g., WRITE), target to initiator (e.g., READ),
or in both directions. In the response phase, the target returns the

final status of the operation, including any errors.

Command Descriptor Blocks (CDB) are the data structures used to
contain the command parameters that an initiator sends to a target.
The CDB content and structure is defined by [SAM2] and device-type
specific SCSI1 standards.

3.2. 1SCSI Concepts and Functional Overview

The iSCSI protocol is a mapping of the SCSI remote procedure
invocation model (see [SAM2]) over the TCP protocol. SCSI commands
are carried by iSCSI requests and SCSI responses and status are
carried by 1SCSI responses. 1SCSI also uses the request response
mechanism for i1SCSI protocol mechanisms.

For the remainder of this document, the terms "initiator" and
"target" refer to "iSCSI initiator node" and "iSCSI target node",
respectively (see Section 3.4.1 iSCSI Architecture Model) unless
otherwise qualified.

In keeping with similar protocols, the initiator and target divide
their communications into messages. This document uses the term
"1SCS1 protocol data unit" (iSCSI PDU) for these messages.

For performance reasons, iSCSI allows a "phase-collapse”. A command
and its associated data may be shipped together from initiator to
target, and data and responses may be shipped together from targets.

The iSCSI transfer direction is defined with respect to the
initiator. Outbound or outgoing transfers are transfers from an
initiator to a target, while inbound or incoming transfers are from a
target to an initiator.

An iSCSI task is an iSCSI request for which a response is expected.
In this document "iSCSI request', "iSCSI command', request, or
(unqualified) command have the same meaning. Also, unless otherwise

specified, status, response, or numbered response have the same
meaning.

Satran, et al. Standards Track [Page 18]

RFC 3720 iSCSI April 2004

3.2.1. Layers and Sessions

The following conceptual layering model is used to specify initiator
and target actions and the way in which they relate to transmitted
and received Protocol Data Units:

a) the SCSI layer builds/receives SCSI CDBs (Command Descriptor
Blocks) and passes/receives them with the remaining command
execute parameters ([SAM2]) to/from

b) the i1SCSI layer that builds/receives 1SCSI PDUs and
relays/receives them to/from one or more TCP connections; the
group of connections form an initiator-target ''session".

Communication between the initiator and target occurs over one or
more TCP connections. The TCP connections carry control messages,
SCSI commands, parameters, and data within iSCSI Protocol Data Units
(iSCSI PDUs). The group of TCP connections that link an initiator
with a target form a session (loosely equivalent to a SCSI I_T nexus,
see Section 3.4.2 SCSI Architecture Model). A session is defined by
a session ID that is composed of an initiator part and a target part.
TCP connections can be added and removed from a session. Each
connection within a session is identified by a connection ID (CID).

Across all connections within a session, an initiator sees one

"target image'. All target identifying elements, such as LUN, are
the same. A target also sees one "initiator image™ across all
connections within a session. Initiator identifying elements, such

as the Initiator Task Tag, are global across the session regardless
of the connection on which they are sent or received.

iSCSI targets and initiators MUST support at least one TCP connection
and MAY support several connections in a session. For error recovery
purposes, targets and initiators that support a single active
connection In a session SHOULD support two connections during
recovery.

3.2.2. Ordering and §SCSI Numbering

iSCSI uses Command and Status numbering schemes and a Data sequencing
scheme.

Command numbering is session-wide and is used for ordered command

delivery over multiple connections. It can also be used as a
mechanism for command flow control over a session.

Satran, et al. Standards Track [Page 19]

RFC 3720 iSCSI April 2004

Status numbering is per connection and is used to enable missing
status detection and recovery in the presence of transient or
permanent communication errors.

Data sequencing is per command or part of a command (R2T triggered
sequence) and is used to detect missing data and/or R2T PDUs due to
header digest errors.

Typically, fields in the iSCSI PDUs communicate the Sequence Numbers
between the initiator and target. During periods when traffic on a
connection is unidirectional, i1SCSI NOP-Out/In PDUs may be utilized
to synchronize the command and status ordering counters of the target
and initiator.

The iSCSI session abstraction is equivalent to the SCSI 1_T nexus,
and the i1SCSI session provides an ordered command delivery from the
SCSI initiator to the SCSI target. For detailed design
considerations that led to the iSCSI session model as it is defined
here and how it relates the SCSI command ordering features defined in
SCSI1 specifications to the iSCSI concepts see [CORD].

3.2.2.1. Command Numbering and Acknowledging

iSCSI performs ordered command delivery within a session. All
commands (initiator-to-target PDUs) in transit from the initiator to
the target are numbered.

iSCSI considers a task to be instantiated on the target in response
to every request issued by the initiator. A set of task management
operations including abort and reassign (see Section 10.5 Task
Management Function Request) may be performed on any iSCSI task.

Some iSCSI tasks are SCSI tasks, and many SCSI activities are related
to a SCSI task ([SAM2]). In all cases, the task is identified by the
Initiator Task Tag for the life of the task.

The command number is carried by the iSCSI PDU as CmdSN

(Command Sequence Number). The numbering is session-wide. Outgoing
iSCS1 PDUs carry this number. The iSCSI initiator allocates CmdSNs
with a 32-bit unsigned counter (modulo 2**32). Comparisons and
arithmetic on CmdSN use Serial Number Arithmetic as defined in
[RFC1982] where SERIAL_BITS = 32.

Commands meant for immediate delivery are marked with an immediate

delivery flag; they MUST also carry the current CmdSN. CmdSN does
not advance after a command marked for immediate delivery is sent.

Satran, et al. Standards Track [Page 20]

RFC 3720 iSCSI April 2004

Command numbering starts with the first login request on the first
connection of a session (the leading login on the leading connection)
and command numbers are incremented by 1 for every non-immediate
command issued afterwards.

IT immediate delivery is used with task management commands, these
commands may reach the target before the tasks on which they are
supposed to act. However their CmdSN serves as a marker of their
position in the stream of commands. The initiator and target must
ensure that the task management commands act as specified by [SAM2].
For example, both commands and responses appear as iIf delivered in
order. Whenever CmdSN for an outgoing PDU is not specified by an
explicit rule, CmdSN will carry the current value of the local CmdSN
variable (see later iIn this section).

The means by which an implementation decides to mark a PDU for
immediate delivery or by which i1SCSI decides by itself to mark a PDU
for immediate delivery are beyond the scope of this document.

The number of commands used for immediate delivery is not limited and
their delivery for execution is not acknowledged through the
numbering scheme. Immediate commands MAY be rejected by the i1SCSI
target layer due to a lack of resources. An iISCSI target MUST be
able to handle at least one immediate task management command and one
immediate non-task-management iSCSI command per connection at any
time.

In this document, delivery for execution means delivery to the SCSI
execution engine or an iISCSI protocol specific execution engine
(e.g., for text requests with public or private extension keys
involving an execution component). With the exception of the
commands marked for immediate delivery, the iSCSI target layer MUST
deliver the commands for execution in the order specified by CmdSN.
Commands marked for immediate delivery may be delivered by the i1SCSI
target layer for execution as soon as detected. 1iSCSI may avoid
delivering some commands to the SCSI target layer if required by a
prior SCSI or iSCSI action (e.g., CLEAR TASK SET Task Management
request received before all the commands on which it was supposed to
act).

On any connection, the iSCSI initiator MUST send the commands in
increasing order of CmdSN, except for commands that are retransmitted
due to digest error recovery and connection recovery.

For the numbering mechanism, the initiator and target maintain the
following three variables for each session:

Satran, et al. Standards Track [Page 21]

RFC 3720 iSCSI April 2004

- CmdSN - the current command Sequence Number, advanced by 1 on
each command shipped except for commands marked for immediate
delivery. CmdSN always contains the number to be assigned to
the next Command PDU.

- ExpCmdSN - the next expected command by the target. The target
acknowledges all commands up to, but not including, this
number. The initiator treats all commands with CmdSN less than
ExpCmdSN as acknowledged. The target iSCSI layer sets the
ExpCmdSN to the largest non-immediate CmdSN that it can deliver
for execution plus 1 (no holes in the CmdSN sequence).

- MaxCmdSN - the maximum number to be shipped. The queuing
capacity of the receiving iISCSI layer is MaxCmdSN - ExpCmdSN +
1.

The initiator’s ExpCmdSN and MaxCmdSN are derived from
target-to-initiator PDU fields. Comparisons and arithmetic on
ExpCmdSN and MaxCmdSN MUST use Serial Number Arithmetic as defined in
[RFC1982] where SERIAL_BITS = 32.

The target MUST NOT transmit a MaxCmdSN that is less than
ExpCmdSN-1. For non-immediate commands, the CmdSN field can take any
value from ExpCmdSN to MaxCmdSN inclusive. The target MUST silently
ignhore any non-immediate command outside of this range or non-
immediate duplicates within the range. The CmdSN carried by
immediate commands may lie outside the ExpCmdSN to MaxCmdSN range.
For example, if the initiator has previously sent a non-immediate
command carrying the CmdSN equal to MaxCmdSN, the target window is
closed. For group task management commands issued as immediate
commands, CmdSN indicates the scope of the group action (e.g., on
ABORT TASK SET indicates which commands are aborted).

MaxCmdSN and ExpCmdSN fields are processed by the initiator as
follows:

- If the PDU MaxCmdSN is less than the PDU ExpCmdSN-1 (in Serial
Arithmetic Sense), they are both ignored.

- 1If the PDU MaxCmdSN is greater than the local MaxCmdSN (in
Serial Arithmetic Sense), it updates the local MaxCmdSN;
otherwise, it is ignored.

- If the PDU ExpCmdSN is greater than the local ExpCmdSN (in
Serial Arithmetic Sense), it updates the local ExpCmdSN;
otherwise, It is ignhored.

This sequence is required because updates may arrive out of order
(e.g., the updates are sent on different TCP connections).

iSCSI initiators and targets MUST support the command numbering
scheme.

Satran, et al. Standards Track [Page 22]

RFC 3720 iSCSI April 2004

A numbered iSCSI request will not change its allocated CmdSN,
regardless of the number of times and circumstances in which it is
reissued (see Section 6.2.1 Usage of Retry). At the target, CmdSN is
only relevant when the command has not created any state related to
its execution (execution state); afterwards, CmdSN becomes
irrelevant. Testing for the execution state (represented by
identifying the Initiator Task Tag) MUST precede any other action at
the target. |If no execution state is found, it is followed by
ordering and delivery. If an execution state is found, it is
followed by delivery.

IT an initiator issues a command retry for a command with CmdSN R on
a connection when the session CmdSN value is Q, it MUST NOT advance
the CmdSN past R + 2**31 -1 unless the connection is no longer
operational (i.e., it has returned to the FREE state, see Section
7.1.3 Standard Connection State Diagram for an Initiator), the
connection has been reinstated (see Section 5.3.4 Connection
Reinstatement), or a non-immediate command with CmdSN equal or
greater than Q was issued subsequent to the command retry on the same
connection and the reception of that command is acknowledged by the
target (see Section 9.4 Command Retry and Cleaning Old Command
Instances).

A target MUST NOT issue a command response or Data-In PDU with status
before acknowledging the command. However, the acknowledgement can
be included in the response or Data-In PDU.

3.2.2.2. Response/Status Numbering and Acknowledging

Responses in transit from the target to the initiator are numbered.
The StatSN (Status Sequence Number) is used for this purpose. StatSN
is a counter maintained per connection. ExpStatSN is used by the
initiator to acknowledge status. The status sequence number space is
32-bit unsigned-integers and the arithmetic operations are the
regular mod(2**32) arithmetic.

Status numbering starts with the Login response to the first Login
request of the connection. The Login response includes an initial
value for status numbering (any initial value is valid).

To enable command recovery, the target MAY maintain enough state
information for data and status recovery after a connection failure.
A target doing so can safely discard all of the state information
maintained for recovery of a command after the delivery of the status
for the command (numbered StatSN) is acknowledged through ExpStatSN.

A large absolute difference between StatSN and ExpStatSN may indicate
a failed connection. Initiators MUST undertake recovery actions if

Satran, et al. Standards Track [Page 23]

RFC 3720 iSCSI April 2004

the difference is greater than an implementation defined constant
that MUST NOT exceed 2**31-1.

Initiators and Targets MUST support the response-numbering scheme.
3.2.2.3. Data Sequencing

Data and R2T PDUs transferred as part of some command execution MUST
be sequenced. The DataSN field is used for data sequencing. For
input (read) data PDUs, DataSN starts with O for the first data PDU
of an input command and advances by 1 for each subsequent data PDU.
For output data PDUs, DataSN starts with O for the first data PDU of
a sequence (the initial unsolicited sequence or any data PDU sequence
issued to satisfy an R2T) and advances by 1 for each subsequent data
PDU. R2Ts are also sequenced per command. For example, the first
R2T has an R2TSN of 0 and advances by 1 for each subsequent R2T. For
bidirectional commands, the target uses the DataSN/R2TSN to sequence
Data-In and R2T PDUs in one continuous sequence (undifferentiated).
Unlike command and status, data PDUs and R2Ts are not acknowledged by
a Field in regular outgoing PDUs. Data-In PDUs can be acknowledged
on demand by a special form of the SNACK PDU. Data and R2T PDUs are
implicitly acknowledged by status for the command. The DataSN/R2TSN
field enables the initiator to detect missing data or R2T PDUs.

For any read or bidirectional command, a target MUST issue less than
2**32 combined R2T and Data-In PDUs. Any output data sequence MUST
contain less than 2**32 Data-Out PDUs.

3.2.3. 1SCSI Login

The purpose of the iSCSI login is to enable a TCP connection for
iSCSI use, authentication of the parties, negotiation of the
session’s parameters and marking of the connection as belonging to an
iSCSI session.

A session is used to identify to a target all the connections with a
given initiator that belong to the same I_T nexus. (For more details
on how a session relates to an I _T nexus, see Section 3.4.2 SCSI
Architecture Model).

The targets listen on a well-known TCP port or other TCP port for
incoming connections. The initiator begins the login process by
connecting to one of these TCP ports.

As part of the login process, the initiator and target SHOULD
authenticate each other and MAY set a security association protocol
for the session. This can occur in many different ways and is
subject to negotiation.

Satran, et al. Standards Track [Page 24]

RFC 3720 iSCSI April 2004

To protect the TCP connection, an IPsec security association MAY be
established before the Login request. For information on using IPsec
security for 1SCSI see Chapter 8 and [RFC3723].

The 1SCSI Login Phase is carried through Login requests and
responses. Once suitable authentication has occurred and operational
parameters have been set, the session transitions to the Full Feature
Phase and the initiator may start to send SCSI commands. The
security policy for whether, and by what means, a target chooses to
authorize an initiator is beyond the scope of this document. For a
more detailed description of the Login Phase, see Chapter 5.

The login PDU includes the ISID part of the session ID (SSID). The
target portal group that services the login is implied by the
selection of the connection endpoint. For a new session, the TSIH is
zero. As part of the response, the target generates a TSIH.

During session establishment, the target identifies the SCSI
initiator port (the "I" in the "1_T nexus') through the value pair
(InitiatorName, ISID). We describe InitiatorName later in this
section. Any persistent state (e.g., persistent reservations) on the
target that is associated with a SCSI initiator port is identified
based on this value pair. Any state associated with the SCSI target
port (the "T" in the "I_T nexus') is identified externally by the
TargetName and portal group tag (see Section 3.4.1 iSCSI Architecture
Model). ISID is subject to reuse restrictions because it is used to
identify a persistent state (see Section 3.4.3 Consequences of the
Model) .

Before the Full Feature Phase is established, only Login Request and
Login Response PDUs are allowed. Login requests and responses MUST
be used exclusively during Login. On any connection, the login phase
MUST immediately follow TCP connection establishment and a subsequent
Login Phase MUST NOT occur before tearing down a connection.

A target receiving any PDU except a Login request before the Login
phase is started MUST immediately terminate the connection on which
the PDU was received. Once the Login phase has started, if the
target receives any PDU except a Login request, it MUST send a Login
reject (with Status "invalid during login™) and then disconnect. If
the initiator receives any PDU except a Login response, it MUST
immediately terminate the connection.

3.2.4. iSCSI Full Feature Phase
Once the initiator is authorized to do so, the iSCSI session iIs in

the 1SCSI Full Feature Phase. A session is in Full Feature Phase
after successfully finishing the Login Phase on the first (leading)

Satran, et al. Standards Track [Page 25]

RFC 3720 iSCSI April 2004

connection of a session. A connection is in Full Feature Phase if
the session is in Full Feature Phase and the connection login has
completed successfully. An iSCSI connection is not in Full Feature
Phase

a) when i1t does not have an established transport connection,
OR

b) when it has a valid transport connection, but a successful
login was not performed or the connection is currently logged
out.

In a normal Full Feature Phase, the initiator may send SCSI commands
and data to the various LUs on the target by encapsulating them in
iSCSI PDUs that go over the established iSCSI session.

3.2.4.1. Command Connection Allegiance

For any iSCSI request issued over a TCP connection, the corresponding
response and/or other related PDU(s) MUST be sent over the same
connection. We call this "connection allegiance™. |If the original
connection fails before the command is completed, the connection
allegiance of the command may be explicitly reassigned to a different
transport connection as described in detail in Section 6.2 Retry and
Reassign in Recovery.

Thus, if an initiator issues a READ command, the target MUST send the
requested data, if any, followed by the status to the initiator over
the same TCP connection that was used to deliver the SCSI command.

If an initiator issues a WRITE command, the initiator MUST send the
data, if any, for that command over the same TCP connection that was
used to deliver the SCSI command. The target MUST return Ready To
Transfer (R2T), if any, and the status over the same TCP connection
that was used to deliver the SCSI command. Retransmission requests
(SNACK PDUs) and the data and status that they generate MUST also use
the same connection.

However, consecutive commands that are part of a SCSI linked
command-chain task (see [SAM2]) MAY use different connections.
Connection allegiance is strictly per-command and not per-task.
During the iSCSI Full Feature Phase, the initiator and target MAY
interleave unrelated SCSI commands, their SCSI Data, and responses
over the session.

Satran, et al. Standards Track [Page 26]

RFC 3720 iSCSI April 2004

3.2.4.2. Data Transfer Overview

Outgoing SCSI1 data (initiator to target user data or command
parameters) is sent as either solicited data or unsolicited data.
Solicited data are sent iIn response to R2T PDUs. Unsolicited data

can be sent as part of an iISCSI command PDU ("immediate data') or in
separate iSCSI data PDUs.

Immediate data are assumed to originate at offset O in the initiator
SCSI write-buffer (outgoing data buffer). All other Data PDUs have
the buffer offset set explicitly in the PDU header.

An initiator may send unsolicited data up to FirstBurstLength as
immediate (up to the negotiated maximum PDU length), in a separate
PDU sequence or both. All subsequent data MUST be solicited. The
maximum length of an individual data PDU or the immediate-part of the
first unsolicited burst MAY be negotiated at login.

The maximum amount of unsolicited data that can be sent with a
command is negotiated at login through the FirstBurstLength key. A
target MAY separately enable immediate data (through the
ImmediateData key) without enabling the more general (separate data
PDUs) form of unsolicited data (through the InitialR2T key).

Unsolicited data on write are meant to reduce the effect of latency
on throughput (no R2T is needed to start sending data). In addition,
immediate data is meant to reduce the protocol overhead (both
bandwidth and execution time).

An iSCSI initiator MAY choose not to send unsolicited data, only
immediate data or FirstBurstLength bytes of unsolicited data with a
command. If any non-immediate unsolicited data is sent, the total
unsolicited data MUST be either FirstBurstLength, or all of the data
if the total amount is less than the FirstBurstLength.

It is considered an error for an initiator to send unsolicited data
PDUs to a target that operates in R2T mode (only solicited data are
allowed). It is also an error for an initiator to send more
unsolicited data, whether immediate or as separate PDUs, than
FirstBurstLength.

An initiator MUST honor an R2T data request for a valid outstanding
command (i.e., carrying a valid Initiator Task Tag) and deliver all
the requested data provided the command is supposed to deliver
outgoing data and the R2T specifies data within the command bounds.
The initiator action is unspecified for receiving an R2T request that
specifies data, all or part, outside of the bounds of the command.

Satran, et al. Standards Track [Page 27]

RFC 3720 iSCSI April 2004

A target SHOULD NOT silently discard data and then request
retransmission through R2T. [Initiators SHOULD NOT keep track of the
data transferred to or from the target (scoreboarding). SCSI targets
perform residual count calculation to check how much data was
actually transferred to or from the device by a command. This may
differ from the amount the initiator sent and/or received for reasons
such as retransmissions and errors. Read or bidirectional commands
implicitly solicit the transmission of the entire amount of data
covered by the command. SCSI data packets are matched to their
corresponding SCS1 commands by using tags specified in the protocol.

In addition, iSCSI initiators and targets MUST enforce some ordering
rules. When unsolicited data is used, the order of the unsolicited
data on each connection MUST match the order in which the commands on
that connection are sent. Command and unsolicited data PDUs may be
interleaved on a single connection as long as the ordering
requirements of each are maintained (e.g., command N+1 MAY be sent
before the unsolicited Data-Out PDUs for command N, but the
unsolicited Data-Out PDUs for command N MUST precede the unsolicited
Data-Out PDUs of command N+1). A target that receives data out of
order MAY terminate the session.

3.2.4.3. Tags and Integrity Checks

Initiator tags for pending commands are unique initiator-wide for a
session. Target tags are not strictly specified by the protocol. It
is assumed that target tags are used by the target to tag (alone or
in combination with the LUN) the solicited data. Target tags are
generated by the target and *“echoed™ by the initiator. These
mechanisms are designed to accomplish efficient data delivery along
with a large degree of control over the data flow.

As the Initiator Task Tag is used to identify a task during its
execution, the iSCSI initiator and target MUST verify that all other
fields used in task-related PDUs have values that are consistent with
the values used at the task instantiation based on the Initiator Task
Tag (e.g-, the LUN used in an R2T PDU MUST be the same as the one
used in the SCSI command PDU used to instantiate the task). Using
inconsistent field values is considered a protocol error.

3.2.4.4_. Task Management

SCSI task management assumes that individual tasks and task groups
can be aborted solely based on the task tags (for individual tasks)
or the timing of the task management command (for task groups), and
that the task management action is executed synchronously - i.e., no
message involving an aborted task will be seen by the SCSI initiator
after receiving the task management response. In ISCSI initiators

Satran, et al. Standards Track [Page 28]

RFC 3720 iSCSI April 2004

and targets interact asynchronously over several connections. 1SCSI
specifies the protocol mechanism and implementation requirements
needed to present a synchronous view while using an asynchronous
infrastructure.

3.2.5. iSCSI Connection Termination

An iSCSI connection may be terminated by use of a transport
connection shutdown or a transport reset. Transport reset is assumed
to be an exceptional event.

Graceful TCP connection shutdowns are done by sending TCP FINs. A
graceful transport connection shutdown SHOULD only be initiated by
either party when the connection is not in iSCSI Full Feature Phase.
A target MAY terminate a Full Feature Phase connection on internal
exception events, but it SHOULD announce the fact through an
Asynchronous Message PDU. Connection termination with outstanding
commands may require recovery actions.

IT a connection is terminated while in Full Feature Phase, connection
cleanup (see section 7) is required prior to recovery. By doing
connection cleanup before starting recovery, the initiator and target
will avoid receiving stale PDUs after recovery.

3.2.6. iSCSI Names

Both targets and initiators require names for the purpose of
identification. In addition, names enable iSCSI storage resources to
be managed regardless of location (address). An iSCSI node name is
also the SCSI device name of an iSCSI device. The iSCSI name of a
SCSI device is the principal object used in authentication of targets
to initiators and initiators to targets. This name is also used to
identify and manage iISCS1 storage resources.

iSCSI names must be unique within the operational domain of the end
user. However, because the operational domain of an IP network is
potentially worldwide, the iSCSI name formats are architected to be
worldwide unique. To assist naming authorities in the construction
of worldwide unique names, iSCSI provides two name formats for
different types of naming authorities.

iSCSI names are associated with iSCSI nodes, and not iSCSI network
adapter cards, to ensure that the replacement of network adapter
cards does not require reconfiguration of all SCSI and iSCSI resource
allocation information.

Satran, et al. Standards Track [Page 29]

RFC 3720 iSCSI April 2004

Some SCSI commands require that protocol-specific identifiers be
communicated within SCSI CDBs. See Section 3.4.2 SCSI Architecture
Model for the definition of the SCSI port name/identifier for 1SCSI
ports.

An initiator may discover the iSCSI Target Names to which it has
access, along with their addresses, using the SendTargets text
request, or other techniques discussed in [RFC3721].

3.2.6.1. iSCSI Name Properties

Each iSCSI node, whether an initiator or target, MUST have an iSCSI
name.

Initiators and targets MUST support the receipt of iSCSI names of up
to the maximum length of 223 bytes.

The initiator MUST present both its iISCSI Initiator Name and the
iSCSI Target Name to which it wishes to connect in the first login
request of a new session or connection. The only exception is if a
discovery session (see Section 2.3 iSCSI Session Types) is to be
established. In this case, the 1ISCSI Initiator Name is still
required, but the 1SCSI Target Name MAY be omitted.

iSCSI names have the following properties:

a) 1SCSI names are globally unique. No two initiators or targets
can have the same name.

b) 1SCSI names are permanent. An iSCSI initiator node or target
node has the same name for its lifetime.

c) 1SCSI names do not imply a location or address. An iSCSI
initiator or target can move, or have multiple addresses. A
change of address does not imply a change of name.

d) 1SCSI names do not rely on a central name broker; the naming
authority is distributed.

e) 1SCSI names support integration with existing unique naming
schemes.

) 1SCSI names rely on existing naming authorities. 1SCSI does
not create any new naming authority.

The encoding of an iSCSI name has the following properties:

a) 1SCSI names have the same encoding method regardless of the
underlying protocols.

b) iISCSI names are relatively simple to compare. The algorithm
for comparing two iSCSI names for equivalence does not rely on
an external server.

Satran, et al. Standards Track [Page 30]

RFC 3720 iSCSI April 2004

c) i1SCSI names are composed only of displayable characters. i1SCSI
names allow the use of international character sets but are not
case sensitive. No whitespace characters are used in iSCSI
names.

d) 1SCSI names may be transported using both binary and
ASCIl1-based protocols.

An iSCSI name really names a logical software entity, and is not tied
to a port or other hardware that can be changed. For instance, an
initiator name should name the iSCSI initiator node, not a particular
NIC or HBA. When multiple NICs are used, they should generally all
present the same iISCSI initiator name to the targets, because they
are simply paths to the same SCSI layer. In most operating systems,
the named entity is the operating system image.

Similarly, a target name should not be tied to hardware interfaces
that can be changed. A target name should identify the logical
target and must be the same for the target regardless of the physical
portion being addressed. This assists iSCSI initiators in
determining that the two targets it has discovered are really two
paths to the same target.

The i1SCSI name is designed to fulfill the functional requirements for
Uniform Resource Names (URN) [RFC1737]. For example, it is required
that the name have a global scope, be independent of address or
location, and be persistent and globally unique. Names must be
extensible and scalable with the use of naming authorities. The name
encoding should be both human and machine readable. See [RFC1737]
for further requirements.

3.2.6.2. iSCSI Name Encoding

An iSCSI name MUST be a UTF-8 encoding of a string of Unicode
characters with the following properties:

- 1t is in Normalization Form C (see "Unicode Normalization
Forms™ [UNICODE]).

- 1t only contains characters allowed by the output of the iSCSI
stringprep template (described in [RFC3722]).

- The following characters are used for formatting i1SCSI names:

- dash (’-7=U+002d)
- dot (.7=U+002e)
- colon (”:7=U+003a)

- The UTF-8 encoding of the name is not larger than 223 bytes.

Satran, et al. Standards Track [Page 31]

RFC 3720 iSCSI April 2004

The stringprep process is described in [RFC3454]; iSCSI’s use of the
stringprep process is described in [RFC3722]. Stringprep is a method
designed by the Internationalized Domain Name (IDN) working group to
translate human-typed strings into a format that can be compared as
opaque strings. Strings MUST NOT include punctuation, spacing,
diacritical marks, or other characters that could get in the way of
readability. The stringprep process also converts strings into
equivalent strings of lower-case characters.

The stringprep process does not need to be implemented if the names
are only generated using numeric and lower-case (any character set)
alphabetic characters.

Once 1SCSI names encoded in UTF-8 are "normalized” they may be safely
compared byte-for-byte.

3.2.6.3. 1SCSI Name Structure

An iSCSI name consists of two parts--a type designator followed by a
unique name string.

The i1SCSI name does not define any new naming authorities. Instead,
it supports two existing ways of designating naming authorities: an
iSCSI-Qualified Name, using domain names to identify a naming
authority, and the EUlI format, where the IEEE Registration Authority
assists in the formation of worldwide unique names (EUI-64 format).

The type designator strings currently defined are:

ign. - 1SCSI Qualified name

euli. - Remainder of the string is an IEEE EUI-64
identifier, in ASCll-encoded hexadecimal.

These two naming authority designators were considered sufficient at
the time of writing this document. The creation of additional naming
type designators for 1SCSI may be considered by the IETF and detailed
in separate RFCs.

3.2.6.3.1. Type "ign." (iSCSI Qualified Name)

This 1SCSI name type can be used by any organization that owns a
domain name. This naming format is useful when an end user or
service provider wishes to assign iSCSI names for targets and/or
initiators.

To generate names of this type, the person or organization generating

the name must own a registered domain name. This domain name does
not have to be active, and does not have to resolve to an address; it

Satran, et al. Standards Track [Page 32]

RFC 3720 iSCSI April 2004

Jjust needs to be reserved to prevent others from generating iSCSI
names using the same domain name.

Since a domain name can expire, be acquired by another entity, or may
be used to generate i1SCSI names by both owners, the domain name must
be additionally qualified by a date during which the naming authority
owned the domain name. For this reason, a date code is provided as
part of the "ign." format.

The i1SCSI qualified name string consists of:

- The string "ign.", used to distinguish these names from "eui."
formatted names.

- A date code, in yyyy-mm format. This date MUST be a date
during which the naming authority owned the domain name used in
this format, and SHOULD be the first month in which the domain
name was owned by this naming authority at 00:01 GMT of the
first day of the month. This date code uses the Gregorian
calendar. All four digits in the year must be present. Both

digits of the month must be present, with January == "01" and
December == "12". The dash must be included.
- A dot "."

- The reversed domain name of the naming authority (person or
organization) creating this iSCSI name.

- An optional, colon (:) prefixed, string within the character
set and length boundaries that the owner of the domain name
deems appropriate. This may contain product types, serial
numbers, host identifiers, or software keys (e.g., It may
include colons to separate organization boundaries). With the
exception of the colon prefix, the owner of the domain name can
assign everything after the reversed domain name as desired.

It is the responsibility of the entity that is the naming
authority to ensure that the iSCSI names it assigns are
worldwide unique. For example, "Example Storage Arrays, Inc.",
might own the domain name "example.com™.

The following are examples of iSCSI qualified names that might be
generated by "EXAMPLE Storage Arrays, Inc."

Naming String defined by
Type Date Auth "example.com™ naming authority

ign.2001-04.com.example:storage:diskarrays-sn-a8675309
ign.2001-04.com.example
ign.2001-04.com.example:storage.tapel.sysl._xyz
igqn.2001-04.com.example:storage.disk2.sysl.xyz

Satran, et al. Standards Track [Page 33]

RFC 3720 iSCSI April 2004

3.2.6.3.2. Type "eui.”™ (IEEE EUI-64 format)

The 1EEE Registration Authority provides a service for assigning
globally unique identifiers [EUI]. The EUI-64 format is used to
build a global identifier in other network protocols. For example,
Fibre Channel defines a method of encoding it into a WorldWideName.
For more information on registering for EUl identifiers, see [OUI].

The format is "eui.”™ followed by an EUI-64 identifier (16
ASCIl1-encoded hexadecimal digits).

Example iSCSI name:

Type EUI-64 identifier (ASCIlI-encoded hexadecimal)

I I
eui .02004567A425678D

The I1EEE EUI-64 iSCSI name format might be used when a manufacturer
is already registered with the IEEE Registration Authority and uses
EUI-64 formatted worldwide unique names for its products.

More examples of name construction are discussed in [RFC3721].
3.2.7. Persistent State

iSCSI does not require any persistent state maintenance across
sessions. However, in some cases, SCSI requires persistent
identification of the SCSI initiator port name (See Section 3.4.2
SCSI Architecture Model and Section 3.4.3 Consequences of the Model).

iSCSI sessions do not persist through power cycles and boot
operations.

All iSCSI session and connection parameters are re-initialized upon
session and connection creation.

Commands persist beyond connection termination if the session
persists and command recovery within the session is supported.
However, when a connection is dropped, command execution, as
perceived by iSCSI (i.e., involving iSCSI protocol exchanges for the
affected task), is suspended until a new allegiance is established by
the “task reassign’ task management function. (See Section 10.5 Task
Management Function Request.)

Satran, et al. Standards Track [Page 34]

RFC 3720 iSCSI April 2004

3.2.8. Message Synchronization and Steering

iSCSI presents a mapping of the SCSI protocol onto TCP. This
encapsulation is accomplished by sending iSCSI PDUs of varying
lengths. Unfortunately, TCP does not have a built-in mechanism for
signaling message boundaries at the TCP layer. iSCSI overcomes this
obstacle by placing the message length in the iSCSI message header.
This serves to delineate the end of the current message as well as
the beginning of the next message.

In situations where IP packets are delivered in order from the
network, ISCSI message framing is not an issue and messages are
processed one after the other. In the presence of IP packet
reordering (i.e., frames being dropped), legacy TCP implementations
store the "out of order'™ TCP segments in temporary buffers until the
missing TCP segments arrive, upon which the data must be copied to
the application buffers. In 1SCSI, it is desirable to steer the SCSI
data within these out of order TCP segments into the pre-allocated
SCSI buffers rather than store them in temporary buffers. This
decreases the need for dedicated reassembly buffers as well as the
latency and bandwidth related to extra copies.

Relying solely on the "message length”™ information from the iSCSI
message header may make it impossible to find iSCSI message
boundaries in subsequent TCP segments due to the loss of a TCP
segment that contains the iSCSI message length. The missing TCP
segment(s) must be received before any of the following segments can
be steered to the correct SCSI buffers (due to the inability to
determine the iISCSI message boundaries). Since these segments cannot
be steered to the correct location, they must be saved in temporary
buffers that must then be copied to the SCSI buffers.

Different schemes can be used to recover synchronization. To make
these schemes work, iSCSI implementations have to make sure that the
appropriate protocol layers are provided with enough information to
implement a synchronization and/or data steering mechanism. One of
these schemes is detailed in Appendix A. - Sync and Steering with
Fixed Interval Markers -.

The Fixed Interval Markers (FIM) scheme works by inserting markers in
the payload stream at fixed intervals that contain the offset for the
start of the next §SCSI PDU.

Under normal circumstances (no PDU loss or data reception out of
order), iSCSI data steering can be accomplished by using the
identifying tag and the data offset fields in the iSCSI header in
addition to the TCP sequence number from the TCP header. The

Satran, et al. Standards Track [Page 35]

RFC 3720 iSCSI April 2004

identifying tag helps associate the PDU with a SCSI1 buffer address
while the data offset and TCP sequence number are used to determine
the offset within the buffer.

When the part of the TCP data stream containing an iISCSI PDU header
is delayed or lost, markers may be used to minimize the damage as
follows:

- Markers indicate where the next iSCSI PDU starts and enable
continued processing when iSCSI headers have to be dropped due to
data errors discovered at the iSCSI level (e.g., i1ISCSI header CRC
errors).

- Markers help minimize the amount of data that has to be kept by
the TCP/iSCS1 layer while waiting for a late TCP packet arrival
or recovery, because later they might help find iSCSI PDU headers
and use the information contained in those to steer data to SCSI
buffers.

3.2.8.1. Sync/Steering and iSCSI PDU Length

When a large i1SCSI message is sent, the TCP segment(s) that contain
the i1SCSI header may be lost. The remaining TCP segment(s), up to
the next iSCSI message, must be buffered (in temporary buffers)
because the iSCSI header that indicates to which SCSI buffers the
data are to be steered was lost. To minimize the amount of
buffering, it is recommended that the iSCSI PDU length be restricted
to a small value (perhaps a few TCP segments in length). During
login, each end of the iISCSI session specifies the maximum 1SCS1 PDU
length it will accept.

3.3. iSCSI Session Types
iSCSI defines two types of sessions:

a) Normal operational session - an unrestricted session.

b) Discovery-session - a session only opened for target
discovery. The target MUST ONLY accept text requests with the
SendTargets key and a logout request with the reason "close
the session”™. All other requests MUST be rejected.

The session type is defined during login with the key=value parameter
in the login command.

Satran, et al. Standards Track [Page 36]

RFC 3720 iSCSI April 2004

3.4. SCSI to iSCSI Concepts Mapping Model

The following diagram shows an example of how multiple iSCSI Nodes
(targets in this case) can coexist within the same Network Entity and
can share Network Portals (IP addresses and TCP ports). Other more
complex configurations are also possible. For detailed descriptions
of the components of these diagrams, see Section 3.4.1 iSCSI
Architecture Model.

g +
| Network Entity (iSCSI Client) |
| |
| PSS S S, + |
| | iSCSI Node | |
| | (Initiator) | |
| Fom + |
| | | |
| +-——-————————- + e + |
| INetwork Portal] |Network Portal] |
[| 10.1.30.4 | 1 10.1.40.6 | 1|
ot ot +—+

| |
| 1IP Networks |
I I

+

|[Network Portal] [Network Portal
| 10.1.30.21 | | 10.1.40.3

| TCP Port 3260] | TCP Port 3260
+

4 o ——

| iSCSI Node | | 1SCSI Node |
| (Target) | | (Target) |

3.4.1. 1SCSI Architecture Model
This section describes the part of the iISCSI architecture model that

has the most bearing on the relationship between iSCSI and the SCSI
Architecture Model.

Satran, et al. Standards Track [Page 37]

RFC 3720

a)

b)

©)

d)

e)

Satran,

iSCSI April 2004

Network Entity - represents a device or gateway that is
accessible from the IP network. A Network Entity must have
one or more Network Portals (see item d), each of which can be
used by some iSCSI Nodes (see item (b)) contained in that
Network Entity to gain access to the IP network.

iSCSI Node - represents a single iSCSI initiator or iSCSI
target. There are one or more iSCSI Nodes within a Network
Entity. The iSCSI Node is accessible via one or more Network
Portals (see item d). An iSCSI Node is identified by its
iSCSI Name (see Section 3.2.6 1SCSI Names and Chapter 12).
The separation of the iSCSI Name from the addresses used by
and for the iSCSI node allows multiple iSCSI nodes to use the
same addresses, and the same iSCSI node to use multiple
addresses.

An alias string may also be associated with an 1SCSI Node.
The alias allows an organization to associate a user friendly
string with the 1ISCSI Name. However, the alias string is not
a substitute for the iSCSI Name.

Network Portal - a component of a Network Entity that has a
TCP/IP network address and that may be used by an iSCSI Node
within that Network Entity for the connection(s) within one of
its iISCSI sessions. 1In an initiator, it is identified by its
IP address. In a target, it is identified by its IP address
and its listening TCP port.

Portal Groups - iSCSI supports multiple connections within the
same session; some implementations will have the ability to
combine connections in a session across multiple Network
Portals. A Portal Group defines a set of Network Portals
within an i1SCSI Node that collectively supports the capability
of coordinating a session with connections that span these
portals. Not all Network Portals within a Portal Group need
to participate in every session connected through that Portal
Group. One or more Portal Groups may provide access to an
iSCS1 Node. Each Network Portal, as utilized by a given iSCSI
Node, belongs to exactly one portal group within that node.
Portal Groups are identified within an iSCSI Node by a portal
group tag, a simple unsigned-integer between 0 and 65535 (see
Section 12.3 SendTargets). All Network Portals with the same
portal group tag in the context of a given iSCSI Node are in
the same Portal Group.

et al. Standards Track [Page 38]

RFC 3720 iSCSI April 2004

Both iSCSI Initiators and iSCSI Targets have portal groups,
though only the 1SCSI Target Portal Groups are used directly
in the 1SCSI1 protocol (e.g-, in SendTargets). For references
to the initiator Portal Groups, see Section 9.1.1 Conservative
Reuse of ISIDs.

) Portals within a Portal Group should support similar session
parameters, because they may participate in a common session.

The following diagram shows an example of one such configuration on a
target and how a session that shares Network Portals within a Portal
Group may be established.

iSCSI Target Node
(within Network Entity, not shown)

———————————————————————————— IP Network—---——-——————————
| | |

+----| --------------- | ----- + +----| --------- +

| +-————-——- + e———_— + | | +-————-——- +]

| | Network | | Network | | | | Network | |

| | Portal | | Portal | | | | Portal | |

| +-—-1--—--- + e + | | +--———-—-—--—- +]

| | I |

| | Portal | | | | Portal |

| | Group 1 | | | | Group 2 |

Fo——————— + o ———— +

| | |

oo |-——m - e e *
| | | | |
| gy e + |
| | 1SCSI Session (Target side)] | i1SCSI Session (Target side) | |
1 1 11
1 1 (TSIH = 56) 1 1 (TSIH = 48) 1 1
] +~——-—-————— + o + |
| |
| |
| |

3.4.2. SCSI Architecture Model

This section describes the relationship between the SCSI Architecture
Model [SAM2] and the constructs of the SCSI device, SCSI port and I_T
nexus, and the iSCSI constructs described in Section 3.4.1 iSCSI
Architecture Model.

This relationship implies implementation requirements in order to
conform to the SAM2 model and other SCSI operational functions.
These requirements are detailed in Section 3.4.3 Consequences of the
Model .

Satran, et al. Standards Track [Page 39]

RFC 3720 iSCSI April 2004

The following list outlines mappings of SCSI architectural elements
to 1SCSI.

a) SCSI Device - the SAM2 term for an entity that contains one or
more SCSI ports that are connected to a service delivery
subsystem and supports a SCSI application protocol. For
example, a SCSI Initiator Device contains one or more SCSI
Initiator Ports and zero or more application clients. A SCSI
Target Device contains one or more SCSI Target Ports and one
or more logical units. For iSCSI, the SCSI Device is the
component within an iSCSI Node that provides the SCSI
functionality. As such, there can be one SCSI Device, at
most, within an iSCSI Node. Access to the SCSI Device can
only be achieved in an iSCSI normal operational session (see
Section 3.3 iSCSI Session Types). The SCSI Device Name is
defined to be the iSCSI Name of the node and MUST be used iIn
the i1SCSI protocol.

b) SCSI Port - the SAM2 term for an entity in a SCSI Device that
provides the SCSI functionality to interface with a service
delivery subsystem or transport. For iSCSI, the definition of
SCSI Initiator Port and SCSI Target Port are different.

SCSI Initiator Port: This maps to one endpoint of an i1SCSI
normal operational session (see Section 3.3 iSCSI Session
Types). An iSCSI normal operational session is negotiated
through the login process between an 1SCSI initiator node and
an 1SCSI1 target node. At successful completion of this
process, a SCSI Initiator Port is created within the SCSI
Initiator Device. The SCSI Initiator Port Name and SCSI
Initiator Port ldentifier are both defined to be the iSCSI
Initiator Name together with (a) a label that identifies it as
an initiator port name/identifier and (b) the 1SID portion of
the session identifier.

SCSI Target Port: This maps to an iSCSI Target Portal Group.
The SCSI Target Port Name and the SCSI Target Port ldentifier
are both defined to be the iSCSI Target Name together with (&)
a label that identifies it as a target port name/identifier
and (b) the portal group tag.

The SCSI Port Name MUST be used in iSCSI. When used in SCSI
parameter data, the SCSI port name MUST be encoded as:
- The iSCSI Name in UTF-8 format, followed by
- a comma separator (1 byte), followed by
- the ASCII character ”i” (for SCSI Initiator Port) or the
ASCI1 character *t” (for SCSI Target Port) (1 byte),
followed by

Satran, et al. Standards Track [Page 40]

RFC 3720 iSCSI April 2004

- a comma separator (1 byte), followed by

- a text encoding as a hex-constant (see Section 5.1 Text
Format) of the ISID (for SCSI initiator port) or the portal
group tag (for SCSI target port) including the initial OX
or Ox and the terminating null (15 bytes).

The ASCII character ’i” or “t” is the label that identifies
this port as either a SCSI Initiator Port or a SCSI Target
Port.

c) L_T nexus - a relationship between a SCSI Initiator Port and a
SCSI Target Port, according to [SAM2]. For iSCSI, this
relationship is a session, defined as a relationship between
an 1SCSI Initiator’s end of the session (SCSI Initiator Port)
and the iSCSI Target’s Portal Group. The I_T nexus can be
identified by the conjunction of the SCSI port names or by the
iSCS1 session identifier SSID. 1SCSI defines the 1 _T nexus

identifier to be the tuple (iSCSI Initiator Name + ”i” + ISID,
iSCSI Target Name + “t” + Portal Group Tag).

NOTE: The I_T nexus identifier is not equal to the session
identifier (SSID).

3.4.3. Consequences of the Model

This section describes implementation and behavioral requirements
that result from the mapping of SCSI constructs to the iSCSI
constructs defined above. Between a given SCSI initiator port and a
given SCSI target port, only one 1_T nexus (session) can exist. No
more than one nexus relationship (parallel nexus) is allowed by
[SAM2]. Therefore, at any given time, only one session can exist
between a given iSCSI initiator node and an iSCSI target node, with
the same session identifier (SSID).

These assumptions lead to the following conclusions and requirements:

ISID RULE: Between a given iSCSI Initiator and iSCSI Target Portal
Group (SCSI target port), there can only be one session with a given
value for ISID that identifies the SCSI initiator port. See Section
10.12.5 1ISID.

The structure of the ISID that contains a naming authority component
(see Section 10.12.5 ISID and [RFC3721]) provides a mechanism to
facilitate compliance with the I1SID rule. (See Section 9.1.1
Conservative Reuse of ISIDs.)

Satran, et al. Standards Track [Page 41]

RFC 3720 iSCSI April 2004

The iSCSI Initiator Node should manage the assignment of ISIDs prior
to session initiation. The "ISID RULE"™ does not preclude the use of
the same ISID from the same iSCSI Initiator with different Target
Portal Groups on the same iSCSI target or on other iSCSI targets (see
Section 9.1.1 Conservative Reuse of 1SIDs). Allowing this would be
analogous to a single SCSI Initiator Port having relationships
(nexus) with multiple SCSI target ports on the same SCSI target
device or SCSI target ports on other SCSI target devices. It is also
possible to have multiple sessions with different 1SIDs to the same
Target Portal Group. Each such session would be considered to be
with a different initiator even when the sessions originate from the
same initiator device. The same ISID may be used by a different
iSCSI initiator because it is the iSCSI Name together with the 1SID
that identifies the SCSI Initiator Port.

NOTE: A consequence of the ISID RULE and the specification for the
I_T nexus identifier is that two nexus with the same identifier
should never exist at the same time.

TSIH RULE: The iSCSI Target selects a non-zero value for the TSIH at
session creation (when an initiator presents a O value at Login).
After being selected, the same TSIH value MUST be used whenever the
initiator or target refers to the session and a TSIH is required.

3.4.3.1. |1_T Nexus State

Certain nexus relationships contain an explicit state (e.g-,
initiator-specific mode pages) that may need to be preserved by the
device server [SAM2] in a logical unit through changes or failures in
the iSCSI layer (e.g., session failures). In order for that state to
be restored, the iSCSI initiator should reestablish its session
(re-login) to the same Target Portal Group using the previous ISID.
That i1s, it should perform session recovery as described in Chapter
6. This is because the SCSI initiator port identifier and the SCSI
target port identifier (or relative target port) form the datum that
the SCSI logical unit device server uses to identify the 1 _T nexus.

3.5. Request/Response Summary

This section lists and briefly describes all the iSCSI PDU types
(request and responses).

All iSCSI PDUs are built as a set of one or more header segments
(basic and auxiliary) and zero or one data segments. The header
group and the data segment may each be followed by a CRC (digest).

The basic header segment has a fixed length of 48 bytes.

Satran, et al. Standards Track [Page 42]

RFC 3720 iSCSI April 2004

3.5.1. Request/Response Types Carrying SCSI Payload
3.5.1.1. SCSI-Command

This request carries the SCSI CDB and all the other SCSI execute
command procedure call (see [SAM2]) IN arguments such as task
attributes, Expected Data Transfer Length for one or both transfer
directions (the latter for bidirectional commands), and Task Tag (as
part of the I_T L x nexus). The I_T_L nexus is derived by the
initiator and target from the LUN field in the request and the 1_T
nexus is implicit in the session identification.

In addition, the SCSI-command PDU carries information required for
the proper operation of the iSCSI protocol - the command sequence
number (CmdSN) for the session and the expected status number
(ExpStatSN) for the connection.

All or part of the SCSI output (write) data associated with the SCSI
command may be sent as part of the SCSI-Command PDU as a data
segment.

3.5.1.2. SCSI-Response

The SCSI-Response carries all the SCSI execute-command procedure call
(see [SAM2]) OUT arguments and the SCSI execute-command procedure
call return value.

The SCSI-Response contains the residual counts from the operation, if
any, an indication of whether the counts represent an overflow or an
underflow, and the SCSI status if the status is valid or a response
code (a non-zero return value for the execute-command procedure call)
if the status is not valid.

For a valid status that indicates that the command has been
processed, but resulted in an exception (e.g., a SCSI CHECK
CONDITION), the PDU data segment contains the associated sense data.
The use of Autosense ([SAM2]) is REQUIRED by iSCSI.

Some data segment content may also be associated (in the data
segment) with a non-zero response code.

In addition, the SCSI-Response PDU carries information required for
the proper operation of the iSCSI protocol:

- The number of Data-In PDUs that a target has sent (to enable

the initiator to check that all have arrived).
- StatSN - the Status Sequence Number on this connection.

Satran, et al. Standards Track [Page 43]

RFC 3720 iSCSI April 2004

- ExpCmdSN - the next Expected Command Sequence Number at the
target.

- MaxCmdSN - the maximum CmdSN acceptable at the target from
this initiator.

3.5.1.3 Task Management Function Request

The Task Management function request provides an initiator with a way
to explicitly control the execution of one or more SCSI Tasks or
iSCSI functions. The PDU carries a function identifier (which task
management function to perform) and enough information to
unequivocally identify the task or task-set on which to perform the
action, even if the task(s) to act upon has not yet arrived or has
been discarded due to an error.

The referenced tag identifies an individual task if the function
refers to an individual task.

The 1_T L nexus identifies task sets. In iSCSI the I _T L nexus is
identified by the LUN and the session identification (the session
identifies an 1_T nexus).

For task sets, the CmdSN of the Task Management function request
helps identify the tasks upon which to act, namely all tasks
associated with a LUN and having a CmdSN preceding the Task
Management function request CmdSN.

For a Task Management function, the coordination between responses to
the tasks affected and the Task Management function response is done
by the target.

3.5.1.4. Task Management Function Response

The Task Management function response carries an indication of
function completion for a Task Management function request including
how 1t was completed (response and qualifier) and additional
information for failure responses.

After the Task Management response indicates Task Management function
completion, the initiator will not receive any additional responses
from the affected tasks.

3.5.1.5. SCSI Data-Out and SCSI Data-In
SCS1 Data-Out and SCSI Data-In are the main vehicles by which SCSI
data payload is carried between initiator and target. Data payload

is associated with a specific SCSI command through the Initiator Task
Tag. For target convenience, outgoing solicited data also carries a

Satran, et al. Standards Track [Page 44]

RFC 3720 iSCSI April 2004

Target Transfer Tag (copied from R2T) and the LUN. Each PDU contains
the payload length and the data offset relative to the buffer address
contained in the SCSI execute command procedure call.

In each direction, the data transfer is split into "sequences™. An
end-of-sequence is indicated by the F bit.

An outgoing sequence is either unsolicited (only the first sequence
can be unsolicited) or consists of all the Data-Out PDUs sent in
response to an R2T.

Input sequences are built to enable the direction switching for
bidirectional commands.

For input, the target may request positive acknowledgement of input
data. This is limited to sessions that support error recovery and is
implemented through the A bit in the SCSI Data-In PDU header.

Data-In and Data-Out PDUs also carry the DataSN to enable the
initiator and target to detect missing PDUs (discarded due to an
error).

In addition, StatSN is carried by the Data-In PDUs.

To enable a SCSI command to be processed while involving a minimum
number of messages, the last SCSI Data-In PDU passed for a command
may also contain the status if the status indicates termination with
no exceptions (no sense or response involved).

3.5.1.6. Ready To Transfer (R2T)

R2T is the mechanism by which the SCSI target '"requests" the
initiator for output data. R2T specifies to the initiator the offset
of the requested data relative to the buffer address from the execute
command procedure call and the length of the solicited data.

To help the SCSI target associate the resulting Data-Out with an R2T,
the R2T carries a Target Transfer Tag that will be copied by the
initiator in the solicited SCSI Data-Out PDUs. There are no protocol
specific requirements with regard to the value of these tags, but it
is assumed that together with the LUN, they will enable the target to
associate data with an R2T.

Satran, et al. Standards Track [Page 45]

RFC 3720 iSCSI April 2004

R2T also carries information required for proper operation of the
iSCSI protocol, such as:

R2TSN (to enable an initiator to detect a missing R2T)
StatSN

ExpCmdSN

MaxCmdSN

3.5.2. Requests/Responses carrying SCSI and iSCSI1 Payload
3.5.2.1. Asynchronous Message

Asynchronous Messages are used to carry SCSI asynchronous events
(AEN) and iSCSI1 asynchronous messages.

When carrying an AEN, the event details are reported as sense data in
the data segment.

3.5.3. Requests/Responses Carrying iSCSI Only Payload
3.5.3.1. Text Request and Text Response

Text requests and responses are designed as a parameter negotiation
vehicle and as a vehicle for future extension.

In the data segment, Text Requests/Responses carry text information
using a simple "key=value"™ syntax.

Text Request/Responses may form extended sequences using the same
Initiator Task Tag. The initiator uses the F (Final) flag bit in the
text request header to indicate its readiness to terminate a
sequence. The target uses the F (Final) flag bit in the text
response header to indicate its consent to sequence termination.

Text Request and Responses also use the Target Transfer Tag to
indicate continuation of an operation or a new beginning. A target
that wishes to continue an operation will set the Target Transfer Tag
in a Text Response to a value different from the default OxfFFFffff.
An initiator willing to continue will copy this value into the Target
Transfer Tag of the next Text Request. If the initiator wants to
restart the current target negotiation (start fresh) will set the
Target Transfer Tag to OxFFFFFFff.

Although a complete exchange is always started by the initiator,

specific parameter negotiations may be initiated by the initiator or
target.

Satran, et al. Standards Track [Page 46]

RFC 3720 iSCSI April 2004

3.5.3.2. Login Request and Login Response

Login Requests and Responses are used exclusively during the Login
Phase of each connection to set up the session and connection
parameters. (The Login Phase consists of a sequence of login
requests and responses carrying the same Initiator Task Tag.)

A connection is identified by an arbitrarily selected connection-I1D
(CID) that is unique within a session.

Similar to the Text Requests and Responses, Login Requests/Responses
carry key=value text information with a simple syntax in the data
segment.

The Login Phase proceeds through several stages (security
negotiation, operational parameter negotiation) that are selected
with two binary coded fields in the header -- the "current stage”
(CSG) and the "next stage" (NSG) with the appearance of the latter
being signaled by the "transit" flag (7).

The first Login Phase of a session plays a special role, called the
leading login, which determines some header fields (e.g., the version
number, the maximum number of connections, and the session
identification).

The CmdSN initial value is also set by the leading login.
StatSN for each connection is initiated by the connection login.

A login request may indicate an implied logout (cleanup) of the
connection to be logged in (a connection restart) by using the same
Connection ID (CID) as an existing connection, as well as the same
session identifying elements of the session to which the old
connection was associated.

3.5.3.3. Logout Request and Response

Logout Requests and Responses are used for the orderly closing of
connections for recovery or maintenance. The logout request may be
issued following a target prompt (through an asynchronous message) or
at an initiators initiative. When issued on the connection to be
logged out, no other request may follow it.

The Logout Response indicates that the connection or session cleanup
is completed and no other responses will arrive on the connection (if
received on the logging out connection). In addition, the Logout
Response indicates how long the target will continue to hold
resources for recovery (e.g., command execution that continues on a

Satran, et al. Standards Track [Page 47]

RFC 3720 iSCSI April 2004

new connection) in the text key Time2Retain and how long the
initiator must wait before proceeding with recovery in the text key
Time2Wait.

3.5.3.4. SNACK Request

With the SNACK Request, the initiator requests retransmission of
numbered-responses or data from the target. A single SNACK request
covers a contiguous set of missing items, called a run, of a given
type of items. The type is indicated in a type field in the PDU
header. The run is composed of an initial item (StatSN, DataSN,
R2TSN) and the number of missed Status, Data, or R2T PDUs. For long
Data-1In sequences, the target may request (at predefined minimum
intervals) a positive acknowledgement for the data sent. A SNACK
request with a type field that indicates ACK and the number of
Data-1In PDUs acknowledged conveys this positive acknowledgement.

3.5.3.5. Reject

Reject enables the target to report an iSCSI error condition (e.g.,
protocol, unsupported option) that uses a Reason field in the PDU
header and includes the complete header of the bad PDU in the Reject
PDU data segment.

3.5.3.6. NOP-Out Request and NOP-In Response

This request/response pair may be used by an initiator and target as
a "ping'" mechanism to verify that a connection/session is still
active and all of its components are operational. Such a ping may be
triggered by the initiator or target. The triggering party indicates
that it wants a reply by setting a value different from the default
OXFFFFFFFF in the corresponding Initiator/Target Transfer Tag.

NOP-In/NOP-Out may also be used "unidirectional™ to convey to the
initiator/target command, status or data counter values when there is
no other "carrier” and there is a need to update the initiator/
target.

4_. SCSI Mode Parameters for iSCSI
There are no 1SCSI specific mode pages.

5. Login and Full Feature Phase Negotiation
iSCSI parameters are negotiated at session or connection
establishment by using Login Requests and Responses (see Section

3.2.3 1SCSI Login) and during the Full Feature Phase (Section 3.2.4
iSCSI Full Feature Phase) by using Text Requests and Responses. In

Satran, et al. Standards Track [Page 48]

RFC 3720 iSCSI April 2004

both cases the mechanism used is an exchange of iISCSI-text-key=value
pairs. For brevity iSCSI-text-keys are called just keys in the rest
of this document.

Keys are either declarative or require negotiation and the key
description indicates if the key is declarative or requires
negotiation.

For the declarative keys, the declaring party sets a value for the
key. The key specification indicates if the key can be declared by
the initiator, target or both.

For the keys that require negotiation one of the parties (the
proposing party) proposes a value or set of values by including the
key=value in the data part of a Login or Text Request or Response
PDUs. The other party (the accepting party) makes a selection based
on the value or list of values proposed and includes the selected
value in a key=value in the data part of one of the following Login
or Text Response or Request PDUs. For most of the keys both the
initiator and target can be proposing parties.

The login process proceeds in two stages - the security negotiation
stage and the operational parameter negotiation stage. Both stages
are optional but at least one of them has to be present to enable the
setting of some mandatory parameters.

IT present, the security negotiation stage precedes the operational
parameter negotiation stage.

Progression from stage to stage is controlled by the T (Transition)
bit in the Login Request/Response PDU header. Through the T bit set
to 1, the initiator indicates that it would like to transition. The
target agrees to the transition (and selects the next stage) when
ready. A field in the Login PDU header indicates the current stage
(CSG) and during transition, another field indicates the next stage
(NSG) proposed (initiator) and selected (target).

The text negotiation process is used to negotiate or declare
operational parameters. The negotiation process is controlled by the
F (final) bit in the PDU header. During text negotiations, the F bit
is used by the iInitiator to indicate that it is ready to finish the
negotiation and by the Target to acquiesce the end of negotiation.

Since some key=value pairs may not fit entirely in a single PDU, the

C (continuation) bit is used (both in Login and Text) to indicate
that "more follows™.

Satran, et al. Standards Track [Page 49]

RFC 3720 iSCSI April 2004

The text negotiation uses an additional mechanism by which a target
may deliver larger amounts of data to an enquiring initiator. The
target sets a Target Task Tag to be used as a bookmark that when
returned by the initiator, means ""go on". If reset to a "neutral
value™, it means "forget about the rest™.

This chapter details types of keys and values used, the syntax rules
for parameter formation, and the negotiation schemes to be used with
different types of parameters.

5.1. Text Format

The initiator and target send a set of key=value pairs encoded in
UTF-8 Unicode. All the text keys and text values specified in this
document are to be presented and interpreted in the case in which
they appear in this document. They are case sensitive.

The following character symbols are used in this document for text
items (the hexadecimal values represent Unicode code points):

(a-z, A-Z) - letters

(0-9) - digits

" (0x20) - space

""" (0x2e) - dot

- (0x2d) - minus

"+ (0x2b) - plus

"@" (0x40) - commercial at
" " (Ox5F) - underscore

=" (0x3d) - equal

":" (Ox3a) - colon

"/" (0Ox2F) - solidus or slash
"[" (Ox5b) - left bracket
"1 (Ox5d) - right bracket
null (0x00) - null separator
", (0x2c) - comma

Tt (Ox7e) - tilde

Key=value pairs may span PDU boundaries. An initiator or target that
sends partial key=value text within a PDU indicates that more text
follows by setting the C bit in the Text or Login Request or Text or
Login Response to 1. Data segments in a series of PDUs that have the
C bit set to 1 and end with a PDU that have the C bit set to 0, or
include a single PDU that has the C bit set to 0, have to be
considered as forming a single logical-text-data-segment (LTDS).

Every key=value pair, including the last or only pair in a LTDS, MUST
be followed by one null (0x00) delimiter.

Satran, et al. Standards Track [Page 50]

RFC 3720 iSCSI April 2004

A key-name is whatever precedes the first "=" in the key=value pair.
The term key is used frequently in this document in place of
key-name.

A value is whatever follows the first =" in the key=value pair up to

the end of the key=value pair, but not including the null delimiter.
The following definitions will be used in the rest of this document:

standard-label: A string of one or more characters that consist of
letters, digits, dot, minus, plus, commercial at, or underscore.
A standard-label MUST begin with a capital letter and must not
exceed 63 characters.

key-name: A standard-label.

text-value: A string of zero or more characters that consist of
letters, digits, dot, minus, plus, commercial at, underscore,
slash, left bracket, right bracket, or colon.

iSCSI-name-value: A string of one or more characters that consist
of minus, dot, colon, or any character allowed by the output of
the 1SCSI string-prep template as specified in [RFC3722] (see
also Section 3.2.6.2 1SCSI Name Encoding).

iSCSI-local-name-value: A UTF-8 string; no null characters are
allowed in the string. This encoding is to be used for localized
(internationalized) aliases.

boolean-value: The string "Yes"™ or "No".

hex-constant: A hexadecimal constant encoded as a string that
starts with "0x" or "0X" followed by one or more digits or the
letters a, b, ¢, d, e, f, A, B, C, D, E, or F. Hex-constants are
used to encode numerical values or binary strings. When used to
encode numerical values, the excessive use of leading O digits is
discouraged. The string following 0X (or 0x) represents a basel6
number that starts with the most significant basel6 digit,
followed by all other digits in decreasing order of significance
and ending with the least-significant basel6 digit. When used to
encode binary strings, hexadecimal constants have an implicit
byte-length that includes four bits for every hexadecimal digit
of the constant, including leading zeroes. For example, a
hex-constant of n hexadecimal digits has a byte-length of (the
integer part of) (n+l1l)/2.

Satran, et al. Standards Track [Page 51]

RFC 3720 iSCSI April 2004

decimal-constant: An unsigned decimal number with the digit O or a
string of one or more digits that start with a non-zero digit.
Decimal-constants are used to encode numerical values or binary
strings. Decimal constants can only be used to encode binary
strings if the string length is explicitly specified. There is
no implicit length for decimal strings. Decimal-constant MUST
NOT be used for parameter values if the values can be equal or
greater than 2**64 (numerical) or for binary strings that can be
longer than 64 bits.

base64-constant: base64 constant encoded as a string that starts
with "Ob"™ or "OB" followed by 1 or more digits or letters or plus
or slash or equal. The encoding is done according to [RFC2045]
and each character, except equal, represents a base64 digit or a
6-bit binary string. Base64-constants are used to encode
numerical-values or binary strings. When used to encode
numerical values, the excessive use of leading O digits (encoded
as A) is discouraged. The string following OB (or 0Ob) represents
a base64 number that starts with the most significant base64
digit, followed by all other digits in decreasing order of
significance and ending with the least-significant base64 digit;
the least significant base64 digit may be optionally followed by
pad digits (encoded as equal) that are not considered as part of
the number. When used to encode binary strings, base64-constants
have an implicit
byte-length that includes six bits for every character of the
constant, excluding trailing equals (i.e., a base64-constant of n
base64 characters excluding the trailing equals has a byte-length
of ((the integer part of) (n*3/4)). Correctly encoded base64
strings cannot have n values of 1, 5 ... k*4+1.

numerical-value: An unsigned integer always less than 2**64 encoded
as a decimal-constant or a hex-constant. Unsigned integer
arithmetic applies to numerical-values.

large-numerical-value: An unsigned integer that can be larger than
or equal to 2**64 encoded as a hex constant, or
base64-constant. Unsigned integer arithmetic applies to
large-numeric-values.

numeric-range: Two numerical-values separated by a tilde where the
value to the right of tilde must not be lower than the value to
the left.

regular-binary-value: A binary string not longer than 64 bits
encoded as a decimal constant, hex constant, or base64-constant.
The length of the string is either specified by the key
definition or is the implicit byte-length of the encoded string.

Satran, et al. Standards Track [Page 52]

RFC 3720 iSCSI April 2004

large-binary-value: A binary string longer than 64 bits encoded as
a hex-constant or base64-constant. The length of the string is
either specified by the key definition or is the implicit
byte-length of the encoded string.

binary-value: A regular-binary-value or a large-binary-value.
Operations on binary values are key specific.

simple-value: Text-value, iSCSI-name-value, boolean-value,
numeric-value, a numeric-range, or a binary-value.

list-of-values: A sequence of text-values separated by a comma.

IT not otherwise specified, the maximum length of a simple-value (not
its encoded representation) is 255 bytes, not including the delimiter
(comma or zero byte).

Any iSCSI target or initiator MUST support receiving at least 8192
bytes of key=value data in a negotiation sequence. When proposing or
accepting authentication methods that explicitly require support for
very long authentication items, the initiator and target MUST support
receiving of at least 64 kilobytes of key=value data (see Appendix
11.1.2 - Simple Public-Key Mechanism (SPKM) - that require support
for public key certificates).

5.2. Text Mode Negotiation

During login, and thereafter, some session or connection parameters
are either declared or negotiated through an exchange of textual
information.

The initiator starts the negotiation and/or declaration through a
Text or Login Request and indicates when it is ready for completion
(by setting the F bit to 1 and keeping it to 1 in a Text Request or
the T bit in the Login Request). As negotiation text may span PDU
boundaries, a Text or Login Request or Text or Login Response PDU
that has the C bit set to 1 MUST NOT have the F/T bit set to 1.

A target receiving a Text or Login Request with the C bit set to 1
MUST answer with a Text or Login Response with no data segment
(DataSegmentLength 0). An initiator receiving a Text or Login
Response with the C bit set to 1 MUST answer with a Text or Login
Request with no data segment (DataSegmentLength 0).

A target or initiator SHOULD NOT use a Text or Login Response or Text

or Login Request with no data segment (DataSegmentLength 0) unless
explicitly required by a general or a key-specific negotiation rule.

Satran, et al. Standards Track [Page 53]

RFC 3720 iSCSI April 2004

The format of a declaration is:
Declarer-> <key>=<valuex>
The general format of text negotiation is:

Proposer-> <key>=<valuex>
Acceptor-> <key>={<valuey>|NotUnderstood]Irrelevant|Reject}

Thus a declaration is a one-way textual exchange while a negotiation
is a two-way exchange.

The proposer or declarer can either be the initiator or the target,
and the acceptor can either be the target or initiator, respectively.
Targets are not limited to respond to key=value pairs as proposed by
the initiator. The target may propose key=value pairs of its own.

All negotiations are explicit (i.e., the result MUST only be based on
newly exchanged or declared values). There are no implicit
proposals. |If a proposal is not made, then a reply cannot be
expected. Conservative design also requires that default values
should not be relied upon when use of some other value has serious
consequences.

The value proposed or declared can be a numerical-value, a
numerical-range defined by lower and upper values with both integers
separated by a tilde, a binary value, a text-value, an
iSCSI-name-value, an iSCSI-local-name-value, a boolean-value (Yes or
No), or a list of comma separated text-values. A range, a
large-numerical-value, an iSCSI-name-value and an
iSCSI-local-name-value MAY ONLY be used if it is explicitly allowed.
An accepted value can be a numerical-value, a large-numerical-value,
a text-value, or a boolean-value.

IT a specific key i1s not relevant for the current negotiation, the
acceptor may answer with the constant “lIrrelevant” for all types of
negotiation. However the negotiation is not considered as failed if
the answer is "lrrelevant”. The "lIrrelevant” answer is meant for
those cases in which several keys are presented by a proposing party
but the selection made by the acceptor for one of the keys makes
other keys irrelevant. The following example illustrates the use of
“Irrelevant":

I->T OFMarker=Yes,OFMarkInt=204878192
T->1 OFMarker=No,OFMarkInt=Irrelevant

1->T X#vkeyl=(bla,alb,None), X#vkey2=(bla,alb)
T->1 X#vkeyl=None, X#vkey2=Irrelevant

Satran, et al. Standards Track [Page 54]

RFC 3720 iSCSI April 2004

Any key not understood by the acceptor may be ignored by the acceptor
without affecting the basic function. However, the answer for a key
not understood MUST be key=NotUnderstood.

The constants ""None', "Reject", "lIrrelevant”, and "NotUnderstood" are
reserved and MUST ONLY be used as described here. Violation of this
rule is a protocol error (in particular the use of "Reject",
"Irrelevant”, and "NotUnderstood" as proposed values).

Reject or Irrelevant are legitimate negotiation options where allowed
but their excessive use is discouraged. A negotiation is considered
complete when the acceptor has sent the key value pair even if the
value is "Reject”, "lrrelevant'”, or "NotUnderstood. Sending the key
again would be a re-negotiation and is forbidden for many keys.

IT the acceptor sends ""Reject”™ as an answer the negotiated key is
left at its current value (or default if no value was set). If the
current value is not acceptable to the proposer on the connection or
to the session it is sent, the proposer MAY choose to terminate the
connection or session.

All keys in this document, except for the X extension formats, MUST
be supported by iSCSI initiators and targets when used as specified
here. |If used as specified, these keys MUST NOT be answered with
NotUnderstood.

Implementers may introduce new keys by prefixing them with

"X-", followed by their (reversed) domain name, or with new keys
registered with ITANA prefixing them with X#. For example, the entity
owning the domain example.com can issue:

X-com.example_bar.foo.do_something=3
or a new registered key may be used as in:
X#SuperCalyPhraGilistic=Yes
Implementers MAY also introduce new values, but ONLY for new keys or
authentication methods (see Section 11 iSCSI Security Text Keys and
Authentication Methods), or digests (see Section 12.1 HeaderDigest
and DataDigest).
Whenever parameter action or acceptance is dependent on other

parameters, the dependency rules and parameter sequence must be
specified with the parameters.

Satran, et al. Standards Track [Page 55]

RFC 3720 iSCSI April 2004

In the Login Phase (see Section 5.3 Login Phase), every stage is a
separate negotiation. In the FullFeaturePhase, a Text Request
Response sequence is a negotiation. Negotiations MUST be handled as
atomic operations. For example, all negotiated values go into effect
after the negotiation concludes iIn agreement or are ignored if the
negotiation fails.

Some parameters may be subject to integrity rules (e.g., parameter-x
must not exceed parameter-y or parameter-u not 1 implies parameter-v
be Yes). Whenever required, integrity rules are specified with the
keys. Checking for compliance with the integrity rule must only be
performed after all the parameters are available (the existent and
the newly negotiated). An iSCSI target MUST perform integrity
checking before the new parameters take effect. An initiator MAY
perform integrity checking.

An iSCSI initiator or target MAY terminate a negotiation that does
not end within a reasonable time or number of exchanges.

5.2.1. List negotiations

In list negotiation, the originator sends a list of values (which may
include ""None™) in its order of preference.

The responding party MUST respond with the same key and the first
value that it supports (and is allowed to use for the specific
originator) selected from the originator list.

The constant "'None™ MUST always be used to indicate a missing
function. However, "None" is only a valid selection if it is
explicitly proposed.

IT an acceptor does not understand any particular value in a list, it
MUST ignore it. If an acceptor does not support, does not
understand, or is not allowed to use any of the proposed options with
a specific originator, it may use the constant "Reject' or terminate
the negotiation. The selection of a value not proposed MUST be
handled as a protocol error.

5.2.2. Simple-value Negotiations

For simple-value negotiations, the accepting party MUST answer with
the same key. The value it selects becomes the negotiation result.

Proposing a value not admissible (e.g., not within the specified

bounds) MAY be answered with the constant "Reject™ or the acceptor
MAY select an admissible value.

Satran, et al. Standards Track [Page 56]

RFC 3720 iSCSI April 2004

The selection by the acceptor, of a value not admissible under the
selection rules is considered a protocol error. The selection rules
are key-specific.

For a numerical range, the value selected must be an integer within
the proposed range or "Reject” (if the range is unacceptable).

In Boolean negotiations (i.e., those that result in keys taking the
values Yes or No), the accepting party MUST answer with the same key
and the result of the negotiation when the received value does not
determine that result by itself. The last value transmitted becomes
the negotiation result. The rules for selecting the value to answer
with are expressed as Boolean functions of the value received, and
the value that the accepting party would have selected if given a
choice.

Specifically, the two cases in which answers are OPTIONAL are:

- The Boolean function is "AND"™ and the value "No" is received.
The outcome of the negotiation is "No".

- The Boolean function is "OR" and the value "Yes" is received.
The outcome of the negotiation is "Yes".

Responses are REQUIRED in all other cases, and the value chosen and
sent by the acceptor becomes the outcome of the negotiation.

5.3. Login Phase

The Login Phase establishes an 1SCSI connection between an initiator
and a target; it also creates a new session or associates the
connection to an existing session. The Login Phase sets the iSCSI
protocol parameters, security parameters, and authenticates the
initiator and target to each other.

The Login Phase is only implemented via Login Request and Responses.
The whole Login Phase is considered as a single task and has a single
Initiator Task Tag (similar to the linked SCSI commands).

The default MaxRecvDataSegmentlLength is used during Login.

The Login Phase sequence of requests and responses proceeds as
follows:

- Login initial request

- Login partial response (optional)

- More Login Requests and Responses (optional)
- Login Final-Response (mandatory)

Satran, et al. Standards Track [Page 57]

RFC 3720 iSCSI April 2004

The initial Login Request of any connection MUST include the
InitiatorName key=value pair. The initial Login Request of the first
connection of a session MAY also include the SessionType key=value
pair. For any connection within a session whose type is not
"Discovery', the First Login Request MUST also include the TargetName
key=value pair.

The Login Final-response accepts or rejects the Login Request.

The Login Phase MAY include a SecurityNegotiation stage and a
LoginOperationalNegotiation stage or both, but MUST include at least
one of them. The included stage MAY be empty except for the
mandatory names.

The Login Requests and Responses contain a field (CSG) that indicates
the current negotiation stage (SecurityNegotiation or
LoginOperationalNegotiation). |If both stages are used, the
SecurityNegotiation MUST precede the LoginOperationalNegotiation.

Some operational parameters can be negotiated outside the login
through Text Requests and Responses.

Security MUST be completely negotiated within the Login Phase. The
use of underlying IPsec security is specified in Chapter 8 and in
[RFC3723]. 1iSCSI support for security within the protocol only
consists of authentication in the Login Phase.

In some environments, a target or an initiator is not interested iIn
authenticating its counterpart. It is possible to bypass
authentication through the Login Request and Response.

The initiator and target MAY want to negotiate iSCSI authentication
parameters. Once this negotiation is completed, the channel is
considered secure.

Most of the negotiation keys are only allowed in a specific stage.
The SecurityNegotiation keys appear in Chapter 11 and the
LoginOperationalNegotiation keys appear in Chapter 12. Only a
limited set of keys (marked as Any-Stage in Chapter 12) may be used
in any of the two stages.

Any given Login Request or Response belongs to a specific stage; this
determines the negotiation keys allowed with the request or response.
It is considered to be a protocol error to send a key that is not
allowed in the current stage.

Satran, et al. Standards Track [Page 58]

RFC 3720 iSCSI April 2004

Stage transition is performed through a command exchange (request/
response) that carries the T bit and the same CSG code. During this
exchange, the next stage is selected by the target through the "next
stage"™ code (NSG). The selected NSG MUST NOT exceed the value stated
by the initiator. The initiator can request a transition whenever it
is ready, but a target can only respond with a transition after one
is proposed by the initiator.

In a negotiation sequence, the T bit settings in one pair of Login
Request-Responses have no bearing on the T bit settings of the next
pair. An initiator that has a T bit set to 1 in one pair and is
answered with a T bit setting of 0, may issue the next request with
the T bit set to O.

When a transition is requested by the initiator and acknowledged by
the target, both the initiator and target switch to the selected
stage.

Targets MUST NOT submit parameters that require an additional
initiator Login Request in a Login Response with the T bit set to 1.

Stage transitions during login (including entering and exit) are only
possible as outlined in the following table:

gy +
| From To -> | Security | Operational | FullFeature |
I 1 | | |
(Y | | | |
gy +
| (start) | vyes | vyes | no |
gy gy +
| Security | no | ves | ves |
e +
| Operational | no | no | ves |
gy +

The Login Final-Response that accepts a Login Request can only come
as a response to a Login Request with the T bit set to 1, and both
the request and response MUST indicate FullFeaturePhase as the next
phase via the NSG field.

Neither the initiator nor the target should attempt to declare or
negotiate a parameter more than once during login except for
responses to specific keys that explicitly allow repeated key
declarations (e.g., TargetAddress). An attempt to
renegotiate/redeclare parameters not specifically allowed MUST be
detected by the initiator and target. |If such an attempt is detected

Satran, et al. Standards Track [Page 59]

RFC 3720

iSCSI

April 2004

by the target, the target MUST respond with Login reject (initiator
error); if detected by the initiator, the initiator MUST drop the

connection.

5.3.1. Login Phase Start

The Login Phase starts with a Login Request from the initiator to the
target. The initial Login Request includes:

- Protocol version supported by the initiator.
- 1SCSI Initiator Name and iSCSI Target Name

- ISID, TSIH, and connection lds
- Negotiation stage that the initiator is ready to enter.

A login may create a new session or it may add a connection to an
existing session. Between a given i1SCSI
only by an InitiatorName) and a given iSCSI target defined by an

iSCSI TargetName and a Target Portal Group Tag, the login results are
defined by the following table:

Initiator Node (selected

e +
|1SID | TSIH | CID | Target action |
ey +
| new | non-zero | any | fail the login

| | | | ("'session does not exist'™) |
T +
| new | zero | any | instantiate a new session |
- +
|existing | zero | any | do session reinstatement |
| | | | (see section 5.3.5) |
e —— +
Jexisting | non-zero | new | add a new connection to |
| | existing | | the session |
- +
|Jexisting | non-zero |existing] do connection reinstatement]
| | existing | | (see section 5.3.4) |
T ——— +
Jexisting | non-zero | any | fail the login

| | new | (“'session does not exist™) |
- +

Determination of "existing" or "new" are made by the target.

Satran, et al.

Standards Track

[Page 60]

RFC 3720 iSCSI April 2004

Optionally, the Login Request may include:

- Security parameters

OR

- 1SCSI operational parameters

AND/OR

- The next negotiation stage that the initiator is ready to
enter.

The target can answer the login in the following ways:

- Login Response with Login reject. This is an immediate rejection
from the target that causes the connection to terminate and the
session to terminate If this is the first (or only) connection of
a new session. The T bit and the CSG and NSG fields are
reserved.

- Login Response with Login Accept as a final response (T bit set
to 1 and the NSG in both request and response are set to
FullFeaturePhase). The response includes the protocol version
supported by the target and the session ID, and may include iSCSI
operational or security parameters (that depend on the current
stage) .-

- Login Response with Login Accept as a partial response (NSG not
set to FullFeaturePhase in both request and response) that
indicates the start of a negotiation sequence. The response
includes the protocol version supported by the target and either
security or iSCSI parameters (when no security mechanism is
chosen) supported by the target.

IT the initiator decides to forego the SecurityNegotiation stage, it
issues the Login with the CSG set to LoginOperationalNegotiation and
the target may reply with a Login Response that indicates that it is
unwilling to accept the connection (see Section 10.13 Login Response)
without SecurityNegotiation and will terminate the connection with a
response of Authentication failure (see Section 10.13.5 Status-Class
and Status-Detail).

IT the initiator is willing to negotiate iSCSI security, but is
unwilling to make the initial parameter proposal and may accept a
connection without iISCSI security, it issues the Login with the T bit
set to 1, the CSG set to SecurityNegotiation, and the NSG set to
LoginOperationalNegotiation. |If the target is also ready to skip
security, the Login Response only contains the TargetPortalGroupTag
key (see Section 12.9 TargetPortalGroupTag), the T bit set to 1, the
CSG set to SecurityNegotiation, and the NSG set to
LoginOperationalNegotiation.

Satran, et al. Standards Track [Page 61]

RFC 3720 iSCSI April 2004

An initiator that chooses to operate without iSCSI security, with all
the operational parameters taking the default values, issues the
Login with the T bit set to 1, the CSG set to
LoginOperationalNegotiation, and the NSG set to FullFeaturePhase. If
the target is also ready to forego security and can finish its
LoginOperationalNegotiation, the Login Response has T bit set to 1,
the CSG set to LoginOperationalNegotiation, and the NSG set to
FullFeaturePhase in the next stage.

During the Login Phase the iSCSI target MUST return the
TargetPortalGroupTag key with the first Login Response PDU with which
it is allowed to do so (i.e., the first Login Response issued after
the first Login Request with the C bit set to 0) for all session
types when TargetName is given and the response is not a redirection.
The TargetPortalGroupTag key value indicates the iSCSI1 portal group
servicing the Login Request PDU. If the reconfiguration of iSCSI
portal groups is a concern In a given environment, the i1SCSI
initiator should use this key to ascertain that it had indeed
initiated the Login Phase with the intended target portal group.

5.3.2_. 1SCSI Security Negotiation

The security exchange sets the security mechanism and authenticates
the initiator user and the target to each other. The exchange
proceeds according to the authentication method chosen in the
negotiation phase and is conducted using the Login Requests’ and
responses’ key=value parameters.

An initiator directed negotiation proceeds as follows:

- The initiator sends a Login Request with an ordered list of the
options it supports (authentication algorithm). The options are
listed In the initiator’s order of preference. The initiator MAY
also send private or public extension options.

- The target MUST reply with the first option in the list it
supports and is allowed to use for the specific initiator unless
it does not support any, in which case it MUST answer with
"Reject" (see Section 5.2 Text Mode Negotiation). The parameters
are encoded in UTF8 as key=value. For security parameters, see
Chapter 11.

- When the initiator considers that it is ready to conclude the
SecurityNegotiation stage, it sets the T bit to 1 and the NSG to
what it would like the next stage to be. The target will then
set the T bit to 1 and set the NSG to the next stage in the Login
Response when i1t finishes sending its security keys. The next

Satran, et al. Standards Track [Page 62]

RFC 3720 iSCSI April 2004

stage selected will be the one the target selected. If the next
stage is FullFeaturePhase, the target MUST respond with a Login
Response with the TSIH value.

IT the security negotiation fails at the target, then the target MUST
send the appropriate Login Response PDU. If the security negotiation
fails at the initiator, the initiator SHOULD close the connection.

It should be noted that the negotiation might also be directed by the
target if the initiator does support security, but is not ready to
direct the negotiation (propose options).

5.3.3. Operational Parameter Negotiation During the Login Phase
Operational parameter negotiation during the login MAY be done:

- Starting with the first Login Request if the initiator does not
propose any security/integrity option.

- Starting immediately after the security negotiation if the
initiator and target perform such a negotiation.

Operational parameter negotiation MAY involve several Login
Request-Response exchanges started and terminated by the initiator.
The initiator MUST indicate its intent to terminate the negotiation
by setting the T bit to 1; the target sets the T bit to 1 on the last
response.

IT the target responds to a Login Request that has the T bit set to 1
with a Login Response that has the T bit set to 0, the initiator
should keep sending the Login Request (even empty) with the T bit set
to 1, while it still wants to switch stage, until it receives the
Login Response that has the T bit set to 1 or it receives a key that
requires it to set the T bit to O.

Some session specific parameters can only be specified during the
Login Phase of the first connection of a session (i.e., begun by a
Login Request that contains a zero-valued TSIH) - the leading Login
Phase (e.g., the maximum number of connections that can be used for
this session).

A session is operational once it has at least one connection in
FullFeaturePhase. New or replacement connections can only be added
to a session after the session is operational.

For operational parameters, see Chapter 12.

Satran, et al. Standards Track [Page 63]

RFC 3720 iSCSI April 2004

5.3.4. Connection Reinstatement

Connection reinstatement is the process of an initiator logging in
with an ISID-TSIH-CID combination that is possibly active from the
target’s perspective, which causes the implicit logging out of the
connection corresponding to the CID, and reinstating a new Full
Feature Phase iSCSI connection in its place (with the same CID).
Thus, the TSIH in the Login PDU MUST be non-zero and the CID does not
change during a connection reinstatement. The Login Request performs
the logout function of the old connection iIf an explicit logout was
not performed earlier. |In sessions with a single connection, this
may imply the opening of a second connection with the sole purpose of
cleaning up the first. Targets MUST support opening a second
connection even when they do not support multiple connections in Full
Feature Phase if ErrorRecoverylLevel is 2 and SHOULD support opening a
second connection if ErrorRecoverylLevel is less than 2.

IT the operational ErrorRecoverylLevel is 2, connection reinstatement

enables future task reassignment. |If the operational
ErrorRecoverylLevel is less than 2, connection reinstatement is the
replacement of the old CID without enabling task reassignment. In

this case, all the tasks that were active on the old CID must be
immediately terminated without further notice to the initiator.

The initiator connection state MUST be CLEANUP_WAIT (section 7.1.3)
when the initiator attempts a connection reinstatement.

In practical terms, in addition to the implicit logout of the old
connection, reinstatement is equivalent to a new connection login.

5.3.5. Session Reinstatement, Closure, and Timeout

Session reinstatement is the process of the initiator logging in with
an ISID that is possibly active from the target’s perspective. Thus
implicitly logging out the session that corresponds to the ISID and
reinstating a new iSCSI session in its place (with the same ISID).
Therefore, the TSIH in the Login PDU MUST be zero to signal session
reinstatement. Session reinstatement causes all the tasks that were
active on the old session to be immediately terminated by the target
without further notice to the initiator.

The initiator session state MUST be FAILED (Section 7.3 Session State
Diagrams) when the initiator attempts a session reinstatement.

Satran, et al. Standards Track [Page 64]

RFC 3720 iSCSI April 2004

Session closure is an event defined to be one of the following:

- A successful "session close" logout.

- A successful "connection close" logout for the last Full Feature
Phase connection when no other connection in the session is
waiting for cleanup (Section 7.2 Connection Cleanup State Diagram
for Initiators and Targets) and no tasks in the session are
waiting for reassignment.

Session timeout is an event defined to occur when the last connection
state timeout expires and no tasks are waiting for reassignment.

This takes the session to the FREE state (N6 transition in the
session state diagram).

5.3.5.1. Loss of Nexus Notification

The i1SCSI layer provides the SCS1 layer with the "1_T nexus loss™
notification when any one of the following events happens:

a) Successful completion of session reinstatement.
b) Session closure event.
c) Session timeout event.

Certain SCSI object clearing actions may result due to the
notification in the SCSI end nodes, as documented in Appendix F.
- Clearing Effects of Various Events on Targets -.

5.3.6. Session Continuation and Failure

Session continuation is the process by which the state of a
preexisting session continues to be used by connection reinstatement
(Section 5.3.4 Connection Reinstatement), or by adding a connection
with a new CID. Either of these actions associates the new transport
connection with the session state.

Session failure is an event where the last Full Feature Phase
connection reaches the CLEANUP_WAIT state (Section 7.2 Connection
Cleanup State Diagram for Initiators and Targets), or completes a
successful recovery logout, thus causing all active tasks (that are
formerly allegiant to the connection) to start waiting for task
reassignment.

Satran, et al. Standards Track [Page 65]

RFC 3720 iSCSI April 2004

5.4. Operational Parameter Negotiation Outside the Login Phase

Some operational parameters MAY be negotiated outside (after) the
Login Phase.

Parameter negotiation in Full Feature Phase is done through Text
requests and responses. Operational parameter negotiation MAY
involve several Text request-response exchanges, which the initiator
always starts and terminates using the same Initiator Task Tag. The
initiator MUST indicate its intent to terminate the negotiation by
setting the F bit to 1; the target sets the F bit to 1 on the last
response.

IT the target responds to a Text request with the F bit set to 1 and
with a Text response with the F bit set to 0, the initiator should
keep sending the Text request (even empty) with the F bit set to 1,
while it still wants to finish the negotiation, until It receives the
Text response with the F bit set to 1. Responding to a Text request
with the F bit set to 1 with an empty (no key=value pairs) response
with the F bit set to 0 is discouraged.

Targets MUST NOT submit parameters that require an additional
initiator Text request in a Text response with the F bit set to 1.

In a negotiation sequence, the F bit settings in one pair of Text
request-responses have no bearing on the F bit settings of the next
pair. An initiator that has the F bit set to 1 in a request and is
being answered with an F bit setting of 0 may issue the next request
with the F bit set to O.

Whenever the target responds with the F bit set to 0, it MUST set the
Target Transfer Tag to a value other than the default OxFFffffff.

An initiator MAY reset an operational parameter negotiation by
issuing a Text request with the Target Transfer Tag set to the value
OXFFFFFFFF after receiving a response with the Target Transfer Tag
set to a value other than OxFfffffff. A target may reset an
operational parameter negotiation by answering a Text request with a
Reject PDU.

Neither the initiator nor the target should attempt to declare or
negotiate a parameter more than once during any negotiation sequence
without an intervening operational parameter negotiation reset,
except for responses to specific keys that explicitly allow repeated
key declarations (e.g., TargetAddress). If detected by the target,
this MUST result in a Reject PDU with a reason of "protocol error".
The initiator MUST reset the negotiation as outlined above.

Satran, et al. Standards Track [Page 66]

RFC 3720 iSCSI April 2004

Parameters negotiated by a text exchange negotiation sequence only
become effective after the negotiation sequence is completed.

6. 1SCSI Error Handling and Recovery
6.1. Overview
6.1.1. Background

The following two considerations prompted the design of much of the
error recovery functionality in 1SCSI:

i) An iSCSI PDU may fail the digest check and be dropped, despite
being received by the TCP layer. The iSCSI layer must
optionally be allowed to recover such dropped PDUs.

A TCP connection may fail at any time during the data
transfer. All the active tasks must optionally be allowed to
continue on a different TCP connection within the same
session.

-
-
o/

Implementations have considerable flexibility in deciding what degree
of error recovery to support, when to use it and by which mechanisms
to achieve the required behavior. Only the externally visible
actions of the error recovery mechanisms must be standardized to
ensure interoperability.

This chapter describes a general model for recovery in support of
interoperability. See Appendix E. - Algorithmic Presentation of
Error Recovery Classes - for further detail on how the described
model may be implemented. Compliant implementations do not have to
match the implementation details of this model as presented, but the
external behavior of such implementations must correspond to the
externally observable characteristics of the presented model.

6.1.2. Goals

The major design goals of the iSCSI error recovery scheme are as
follows:

a) Allow iSCSI implementations to meet different requirements by
defining a collection of error recovery mechanisms that
implementations may choose from.

b) Ensure interoperability between any two implementations
supporting different sets of error recovery capabilities.

c) Define the error recovery mechanisms to ensure command
ordering even in the face of errors, for initiators that
demand ordering.

Satran, et al. Standards Track [Page 67]

RFC 3720 iSCSI April 2004

d) Do not make additions in the fast path, but allow moderate
complexity in the error recovery path.

e) Prevent both the initiator and target from attempting to
recover the same set of PDUs at the same time. For example,
there must be a clear "error recovery functionality
distribution” between the initiator and target.

6.1.3. Protocol Features and State Expectations

The initiator mechanisms defined in connection with error recovery
are:

a) NOP-OUT to probe sequence numbers of the target (section
10.18)

b) Command retry (section 6.2.1)

c) Recovery R2T support (section 6.7)

d) Requesting retransmission of status/data/R2T using the SNACK
facility (section 10.16)

e) Acknowledging the receipt of the data (section 10.16)

) Reassigning the connection allegiance of a task to a different
TCP connection (section 6.2.2)

g) Terminating the entire iISCSI session to start afresh (section
6.1.4.4)

The target mechanisms defined in connection with error recovery are:

a) NOP-IN to probe sequence numbers of the initiator (section
10.19)

b) Requesting retransmission of data using the recovery R2T
feature (section 6.7)

c) SNACK support (section 10.16) d) Requesting that parts of
read data be acknowledged (section 10.7.2)

e) Allegiance reassignment support (section 6.2.2)

) Terminating the entire iISCSI session to force the initiator to
start over (section 6.1.4.4)

For any outstanding SCSI command, it is assumed that iSCSI, in
conjunction with SCSI at the initiator, is able to keep enough
information to be able to rebuild the command PDU, and that outgoing
data is available (in host memory) for retransmission while the
command is outstanding. It is also assumed that at the target,
incoming data (read data) MAY be kept for recovery or it can be
reread from a device server.

It is further assumed that a target will keep the "status & sense"
for a command it has executed if it supports status retransmission.

A target that agrees to support data retransmission Is expected to be
prepared to retransmit the outgoing data (i.e., Data-In) on request

Satran, et al. Standards Track [Page 68]

RFC 3720 iSCSI April 2004

until either the status for the completed command is acknowledged, or
the data in question has been separately acknowledged.

6.1.4. Recovery Classes

iSCSI enables the following classes of recovery (in the order of
increasing scope of affected iSCSI tasks):

- Within a command (i.e., without requiring command restart).

- Within a connection (i.e., without requiring the connection to
be rebuilt, but perhaps requiring command restart).

- Connection recovery (i.e., perhaps requiring connections to be
rebuilt and commands to be reissued).

- Session recovery.

The recovery scenarios detailed in the rest of this section are
representative rather than exclusive. In every case, they detail the
lowest class recovery that MAY be attempted. The implementer is left
to decide under which circumstances to escalate to the next recovery
class and/or what recovery classes to implement. Both the iSCSI
target and initiator MAY escalate the error handling to an error
recovery class, which impacts a larger number of iSCSI tasks in any
of the cases identified in the following discussion.

In all classes, the implementer has the choice of deferring errors to
the SCSI initiator (with an appropriate response code), in which case
the task, if any, has to be removed from the target and all the side
effects, such as ACA, must be considered.

Use of within-connection and within-command recovery classes MUST NOT
be attempted before the connection is in Full Feature Phase.

In the detailed description of the recovery classes, the mandating
terms (MUST, SHOULD, MAY, etc.) indicate normative actions to be
executed if the recovery class is supported and used.

6.1.4.1. Recovery Within-command

At the target, the following cases lend themselves to
within-command recovery:

- Lost data PDU - realized through one of the following:

a) Data digest error - dealt with as specified in Section 6.7
Digest Errors, using the option of a recovery R2T.

Satran, et al. Standards Track [Page 69]

RFC 3720 iSCSI April 2004

b) Sequence reception timeout (no data or
partial-data-and-no-F-bit) - considered an implicit sequence
error and dealt with as specified in Section 6.8 Sequence
Errors, using the option of a recovery R2T.

c) Header digest error, which manifests as a sequence reception
timeout or a sequence error - dealt with as specified in
Section 6.8 Sequence Errors, using the option of a recovery
R2T.

At the initiator, the following cases lend themselves to
within-command recovery:

Lost data PDU or lost R2T - realized through one of the
following:

a) Data digest error - dealt with as specified in Section 6.7
Digest Errors, using the option of a SNACK.

b) Sequence reception timeout (no status) or response reception
timeout - dealt with as specified in Section 6.8 Sequence
Errors, using the option of a SNACK.

c) Header digest error, which manifests as a sequence reception
timeout or a sequence error - dealt with as specified in
Section 6.8 Sequence Errors, using the option of a SNACK.

To avoid a race with the target, which may already have a recovery
R2T or a termination response on its way, an initiator SHOULD NOT
originate a SNACK for an R2T based on its internal timeouts (if any).
Recovery iIn this case is better left to the target.

The timeout values used by the iInitiator and target are outside the
scope of this document. Sequence reception timeout is generally a
large enough value to allow the data sequence transfer to be
complete.

6.1.4.2. Recovery Within-connection

At the initiator, the following cases lend themselves to
within-connection recovery:

- Requests not acknowledged for a long time. Requests are
acknowledged explicitly through ExpCmdSN or implicitly by
receiving data and/or status. The initiator MAY retry
non-acknowledged commands as specified in Section 6.2 Retry and
Reassign in Recovery.

Satran, et al. Standards Track [Page 70]

RFC 3720 iSCSI April 2004

Lost iSCSI numbered Response. It is recognized by either
identifying a data digest error on a Response PDU or a Data-In
PDU carrying the status, or by receiving a Response PDU with a
higher StatSN than expected. In the first case, digest error
handling Is done as specified In Section 6.7 Digest Errors using
the option of a SNACK. In the second case, sequence error
handling is done as specified in Section 6.8 Sequence Errors,
using the option of a SNACK.

At the target, the following cases lend themselves to
within-connection recovery:

Status/Response not acknowledged for a long time. The target MAY
issue a NOP-IN (with a valid Target Transfer Tag or otherwise)
that carries the next status sequence number it is going to use
in the StatSN field. This helps the initiator detect any missing
StatSN(s) and issue a SNACK for the status.

The timeout values used by the initiator and the target are outside
the scope of this document.

6.1.4.3. Connection Recovery

At an iSCSI initiator, the following cases lend themselves to
connection recovery:

TCP connection failure: The initiator MUST close the connection.
It then MUST either implicitly or explicitly logout the failed
connection with the reason code "‘remove the connection for
recovery" and reassign connection allegiance for all commands
still in progress associated with the failed connection on one or
more connections (some or all of which MAY be newly established
connections) using the "Task reassign'" task management function
(see Section 10.5.1 Function). For an initiator, a command is iIn
progress as long as it has not received a response or a Data-In
PDU including status.

Note: The logout function is mandatory. However, a new connection
establishment is only mandatory if the failed connection was the
last or only connection in the session.

Receiving an Asynchronous Message that indicates one or all
connections in a session has been dropped. The initiator MUST
handle it as a TCP connection failure for the connection(s)
referred to in the Message.

Satran, et al. Standards Track [Page 71]

RFC 3720 iSCSI April 2004

At an iSCSI target, the following cases lend themselves to connection
recovery:

- TCP connection failure. The target MUST close the connection and,
if more than one connection is available, the target SHOULD send
an Asynchronous Message that indicates it has dropped the
connection. Then, the target will wait for the initiator to
continue recovery.

6.1.4.4_. Session Recovery

Session recovery should be performed when all other recovery attempts
have failed. Very simple initiators and targets MAY perform session
recovery on all iSCSI errors and rely on recovery on the SCSI layer
and above.

Session recovery implies the closing of all TCP connections,
internally aborting all executing and queued tasks for the given
initiator at the target, terminating all outstanding SCSI commands
with an appropriate SCSI service response at the initiator, and
restarting a session on a new set of connection(s) (TCP connection
establishment and login on all new connections).

For possible clearing effects of session recovery on SCSI and iSCSI
objects, refer to Appendix F. - Clearing Effects of Various Events on
Targets -.

6.1.5. Error Recovery Hierarchy

The error recovery classes described so far are organized into a
hierarchy for ease in understanding and to limit the implementation
complexity. With few and well defined recovery levels
interoperability is easier to achieve. The attributes of this
hierarchy are as follows:

a) Each level is a superset of the capabilities of the previous
level. For example, Level 1 support implies supporting all
capabilities of Level 0 and more.

b) As a corollary, supporting a higher error recovery level means
increased sophistication and possibly an increase in resource
requirements.

c) Supporting error recovery level "n" is advertised and
negotiated by each iSCSI entity by exchanging the text key
"ErrorRecoveryLevel=n". The lower of the two exchanged values
is the operational ErrorRecoverylLevel for the session.

Satran, et al. Standards Track [Page 72]

RFC 3720 iSCSI April 2004

The following diagram represents the error recovery hierarchy.

+
/
/ 2\ <-- Connection recovery
[S p— +
/ 1 \ <-- Digest failure recovery
o +
/ 0 \ <-- Session failure recovery
Fo +

The following table lists the error recovery capabilities expected
from the implementations that support each error recovery level.

T e +
|ErrorRecoverylLevel | Associated Error recovery capabilities |
e e +
| 0] | Session recovery class

| | (Section 6.1.4.4 Session Recovery) |
RS Sy ey +
| 1 | Digest failure recovery (See Note below.) |
| | plus the capabilities of ER Level 0O |
e e +
| 2 | Connection recovery class

| | (Section 6.1.4.3 Connection Recovery) |
| | plus the capabilities of ER Level 1

TSRS T +

Note: Digest failure recovery is comprised of two recovery classes:
Within-Connection recovery class (Section 6.1.4.2 Recovery Within-
connection) and Within-Command recovery class (Section 6.1.4.1
Recovery Within-command).

When a defined value of ErrorRecoverylLevel is proposed by an
originator iIn a text negotiation, the originator MUST support the
functionality defined for the proposed value and additionally, the
functionality corresponding to any defined value numerically less
than the proposed. When a defined value of ErrorRecoverylLevel is
returned by a responder in a text negotiation, the responder MUST
support the functionality corresponding to the ErrorRecoverylevel it
is accepting.

When either party attempts to use error recovery functionality beyond
what is negotiated, the recovery attempts MAY fail unless an a priori
agreement outside the scope of this document exists between the two
parties to provide such support.

Satran, et al. Standards Track [Page 73]

RFC 3720 iSCSI April 2004

Implementations MUST support error recovery level "0", while the rest
are OPTIONAL to implement. In implementation terms, the above
striation means that the following incremental sophistication with
each level 1is required.

e e +
|]Level transition | [Incremental requirement |
e e +
| 0-—>1 | PDU retransmissions on the same connection |
e B +
| 1->2 | Retransmission across connections and |
| | allegiance reassignment |
e e +

6.2. Retry and Reassign in Recovery

This section summarizes two important and somewhat related iSCSI
protocol features used in error recovery.

6.2.1. Usage of Retry

By resending the same 1SCSI command PDU (“'retry') in the absence of a
command acknowledgement (by way of an ExpCmdSN update) or a response,
an initiator attempts to "plug”™ (what it thinks are) the
discontinuities in CmdSN ordering on the target end. Discarded
command PDUs, due to digest errors, may have created these
discontinuities.

Retry MUST NOT be used for reasons other than plugging command
sequence gaps, and in particular, cannot be used for requesting PDU
retransmissions from a target. Any such PDU retransmission requests
for a currently allegiant command in progress may be made using the
SNACK mechanism described in section 10.16, although the usage of
SNACK is OPTIONAL.

IT initiators, as part of plugging command sequence gaps as described
above, inadvertently issue retries for allegiant commands already in
progress (i.e., targets did not see the discontinuities in CmdSN
ordering), the duplicate commands are silently ignored by targets as
specified in section 3.2.2.1.

When an i1SCSI command is retried, the command PDU MUST carry the
original Initiator Task Tag and the original operational attributes
(e.g., flags, function names, LUN, CDB etc.) as well as the original
CmdSN. The command being retried MUST be sent on the same connection
as the original command unless the original connection was already
successftully logged out.

Satran, et al. Standards Track [Page 74]

RFC 3720 iSCSI April 2004

6.2.2. Allegiance Reassignment

By issuing a 'task reassign' task management request (Section 10.5.1
Function), the initiator signals i1ts intent to continue an already
active command (but with no current connection allegiance) as part of
connection recovery. This means that a new connection allegiance is
requested for the command, which seeks to associate it to the
connection on which the task management request is being issued.
Before the allegiance reassignment is attempted for a task, an
implicit or explicit Logout with the reason code "‘remove the
connection for recovery"” (see section 10.14) MUST be successfully
completed for the previous connection to which the task was
allegiant.

In reassigning connection allegiance for a command, the targets
SHOULD continue the command from its current state. For example,
when reassigning read commands, the target SHOULD take advantage of
the ExpDataSN field provided by the Task Management function request
(which must be set to zero if there was no data transfer) and bring
the read command to completion by sending the remaining data and
sending (or resending) the status. ExpDataSN acknowledges all data
sent up to, but not including, the Data-In PDU and or R2T with DataSN
(or R2TSN) equal to ExpDataSN. However, targets may choose to
send/receive all unacknowledged data or all of the data on a
reassignment of connection allegiance if unable to recover or
maintain an accurate state. Initiators MUST not subsequently request
data retransmission through Data SNACK for PDUs numbered less than
ExpDataSN (i.e., prior to the acknowledged sequence number). For all
types of commands, a reassignment request implies that the task is
still considered in progress by the initiator and the target must
conclude the task appropriately if the target returns the "Function
Complete" response to the reassignment request. This might possibly
involve retransmission of data/R2T/status PDUs as necessary, but MUST
involve the (re)transmission of the status PDU.

It is OPTIONAL for targets to support the allegiance reassignment.
This capability is negotiated via the ErrorRecoverylLevel text key
during the login time. When a target does not support allegiance
reassignment, it MUST respond with a Task Management response code of
"Allegiance reassignment not supported”. |If allegiance reassignment
is supported by the target, but the task is still allegiant to a
different connection, or a successful recovery Logout of the
previously allegiant connection was not performed, the target MUST
respond with a Task Management response code of "Task still
allegiant™.

Satran, et al. Standards Track [Page 75]

RFC 3720 iSCSI April 2004

IT allegiance reassignment is supported by the target, the Task
Management response to the reassignment request MUST be issued before
the reassignment becomes effective.

IT a SCSI Command that involves data input is reassigned, any SNACK
Tag it holds for a final response from the original connection is
deleted and the default value of 0 MUST be used instead.

6.3. Usage OF Reject PDU in Recovery

Targets MUST NOT implicitly terminate an active task by sending a
Reject PDU for any PDU exchanged during the life of the task. If the
target decides to terminate the task, a Response PDU (SCSI, Text,
Task, etc.) must be returned by the target to conclude the task. If
the task had never been active before the Reject (i.e., the Reject is
on the command PDU), targets should not send any further responses
because the command itself is being discarded.

The above rule means that the initiator can eventually expect a
response on receiving Rejects, if the received Reject is for a PDU
other than the command PDU itself. The non-command Rejects only have
diagnostic value in logging the errors, and they can be used for
retransmission decisions by the initiators.

The CmdSN of the rejected command PDU (if it is a non-immediate
command) MUST NOT be considered received by the target (i.e., a
command sequence gap must be assumed for the CmdSN), even though the
CmdSN of the rejected command PDU may be reliably ascertained. Upon
receiving the Reject, the iInitiator MUST plug the CmdSN gap in order
to continue to use the session. The gap may be plugged either by
transmitting a command PDU with the same CmdSN, or by aborting the
task (see section 6.9 on how an abort may plug a CmdSN gap)-

When a data PDU is rejected and its DataSN can be ascertained, a
target MUST advance ExpDataSN for the current data burst if a
recovery R2T is being generated. The target MAY advance its
ExpDataSN if it does not attempt to recover the lost data PDU.

6.4. Connection Timeout Management

iSCSI defines two session-global timeout values (in seconds)

- Time2Wait and Time2Retain - that are applicable when an iSCSI Full
Feature Phase connection is taken out of service either intentionally
or by an exception. Time2Wait is the initial "respite time" before
attempting an explicit/implicit Logout for the CID in question or
task reassignment for the affected tasks (if any). Time2Retain is
the maximum time after the initial respite interval that the task
and/or connection state(s) is/are guaranteed to be maintained on the

Satran, et al. Standards Track [Page 76]

RFC 3720 iSCSI April 2004

target to cater to a possible recovery attempt. Recovery attempts
for the connection and/or task(s) SHOULD NOT be made before Time2Wait
seconds, but MUST be completed within Time2Retain seconds after that
initial Time2Wait waiting period.

6.4.1. Timeouts on Transport Exception Events

A transport connection shutdown or a transport reset without any
preceding iSCSI protocol interactions informing the end-points of the
fact causes a Full Feature Phase iSCSI connection to be abruptly
terminated. The timeout values to be used in this case are the
negotiated values of defaultTime2Wait (Section 12.15
DefaultTime2Wait) and DefaultTime2Retain (Section 12.16
DefaultTime2Retain) text keys for the session.

6.4.2. Timeouts on Planned Decommissioning

Any planned decommissioning of a Full Feature Phase 1SCSI connection
is preceded by either a Logout Response PDU, or an Async Message PDU.
The Time2Wait and Time2Retain field values (section 10.15) in a
Logout Response PDU, and the Parameter2 and Parameter3 fields of an
Async Message (AsyncEvent types "drop the connection™ or "drop all
the connections™; section 10.9.1) specify the timeout values to be
used in each of these cases.

These timeout values are only applicable for the affected connection,
and the tasks active on that connection. These timeout values have
no bearing on initiator timers (if any) that are already running on
connections or tasks associated with that session.

6.5. Implicit Termination of Tasks

A target implicitly terminates the active tasks due to iSCSI protocol
dynamics in the following cases:

a) When a connection is implicitly or explicitly logged out with
the reason code of ""Close the connection' and there are active
tasks allegiant to that connection.

b) When a connection fails and the connection state eventually
times out (state transition M1 in Section 7.2.2 State
Transition Descriptions for Initiators and Targets) and there
are active tasks allegiant to that connection.

c) When a successful Logout with the reason code of "remove the

connection for recovery" is performed while there are active
tasks allegiant to that connection, and those tasks eventually

Satran, et al. Standards Track [Page 77]

RFC 3720 iSCSI April 2004

time out after the Time2Wait and Time2Retain periods without
allegiance reassignment.

d) When a connection is implicitly or explicitly logged out with
the reason code of "Close the session' and there are active
tasks iIn that session.

IT the tasks terminated in the above cases a), b, c) and d)are SCSI
tasks, they must be internally terminated as if with CHECK CONDITION
status. This status is only meaningful for appropriately handling
the internal SCSI state and SCSI side effects with respect to
ordering because this status iIs never communicated back as a
terminating status to the initiator. However additional actions may
have to be taken at SCSI level depending on the SCSI context as
defined by the SCSI standards (e.g., queued commands and ACA, in
cases a), b), and c), after the tasks are terminated, the target MUST
report a Unit Attention condition on the next command processed on
any connection for each affected 1 T L nexus with the status of CHECK
CONDITION, and the ASC/ASCQ value of 47h/7Fh - "SOME COMMANDS CLEARED
BY ISCSI PROTOCOL EVENT"™ , etc. - see [SAM2] and [SPC3]).

6.6. Format Errors

The following two explicit violations of PDU layout rules are format
errors:

a) Illegal contents of any PDU header field except the Opcode
(legal values are specified in Section 10 iSCSI PDU Formats).

b) Inconsistent field contents (consistent field contents are
specified in Section 10 1SCSI PDU Formats).

Format errors indicate a major implementation flaw in one of the
parties.

When a target or an initiator receives an i1SCSI PDU with a format
error, it MUST immediately terminate all transport connections in the
session either with a connection close or with a connection reset and
escalate the format error to session recovery (see Section 6.1.4.4
Session Recovery).

6.7. Digest Errors
The discussion of the legal choices in handling digest errors below
excludes session recovery as an explicit option, but either party

detecting a digest error may choose to escalate the error to session
recovery.

Satran, et al. Standards Track [Page 78]

RFC 3720 iSCSI April 2004

When a target or an initiator receives any iSCSI PDU, with a header
digest error, it MUST either discard the header and all data up to
the beginning of a later PDU or close the connection. Because the
digest error indicates that the length field of the header may have
been corrupted, the location of the beginning of a later PDU needs to
be reliably ascertained by other means such as the operation of a
sync and steering layer.

When a target receives any iSCSI PDU with a payload digest error, it
MUST answer with a Reject PDU with a reason code of
Data-Digest-Error and discard the PDU.

- If the discarded PDU is a solicited or unsolicited iSCSI data
PDU (for immediate data in a command PDU, non-data PDU rule
below applies), the target MUST do one of the following:

a) Request retransmission with a recovery R2T.

b) Terminate the task with a response PDU with a CHECK
CONDITION Status and an 1SCSI Condition of "protocol service
CRC error™ (Section 10.4.7.2 Sense Data). If the target
chooses to implement this option, it MUST wait to receive
all the data (signaled by a Data PDU with the final bit set
for all outstanding R2Ts) before sending the response PDU.

A task management command (such as an abort task) from the
initiator during this wait may also conclude the task.

- No further action is necessary for targets if the discarded PDU
is a non-data PDU. In case of immediate data being present on
a discarded command, the immediate data is implicitly recovered
when the task is retried (see section 6.2.1), followed by the
entire data transfer for the task.

When an initiator receives any 1SCSI PDU with a payload digest error,
it MUST discard the PDU.

- If the discarded PDU is an 1SCSI data PDU, the initiator MUST do
one of the following:

a) Request the desired data PDU through SNACK. 1In response to the
SNACK, the target MUST either resend the data PDU or reject the
SNACK with a Reject PDU with a reason code of "SNACK reject"” in
which case:

i) |If the status has not already been sent for the command,
the target MUST terminate the command with a CHECK
CONDITION Status and an iSCSI Condition of "SNACK rejected"
(Section 10.4.7.2 Sense Data).

IT the status was already sent, no further action is

necessary for the target. The initiator in this case MUST

wait for the status to be received and then discard it, so
as to internally signal the completion with CHECK CONDITION

-
-
o/

Satran, et al. Standards Track [Page 79]

RFC 3720 iSCSI April 2004

Status and an iSCSI Condition of "protocol service CRC
error’” (Section 10.4.7.2 Sense Data).
b) Abort the task and terminate the command with an error.

- If the discarded PDU is a response PDU, the initiator MUST do one
of the following:

a) Request PDU retransmission with a status SNACK.

b) Logout the connection for recovery and continue the tasks on a
different connection instance as described in Section 6.2 Retry
and Reassign in Recovery.

c) Logout to close the connection (abort all the commands
associated with the connection).

- No further action is necessary for initiators if the discarded PDU
is an unsolicited PDU (e.g-, Async, Reject). Task timeouts as in
the initiator waiting for a command completion, or process
timeouts, as in the target waiting for a Logout, will ensure that
the correct operational behavior will result in these cases
despite the discarded PDU.

6.8. Sequence Errors

When an initiator receives an i1SCSI R2T/data PDU with an out of order
R2TSN/DataSN or a SCSI response PDU with an ExpDataSN that implies
missing data PDU(s), it means that the initiator must have detected a
header or payload digest error on one or more earlier R2T/data PDUs.
The initiator MUST address these implied digest errors as described
in Section 6.7 Digest Errors. When a target receives a data PDU with
an ou