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1. Introduction

This document describes the VP8 compressed video data format,
together with a discussion of the decoding procedure for the format.
It is intended to be used in conjunction with, and as a guide to, the
reference decoder source code provided in Attachment One

(Section 20). If there are any conflicts between this narrative and
the reference source code, the reference source code should be
considered correct. The bitstream is defined by the reference source
code and not this narrative.

Like many modern video compression schemes, VP8 is based on
decomposition of frames into square subblocks of pixels, prediction

of such subblocks using previously constructed blocks, and adjustment
of such predictions (as well as synthesis of unpredicted blocks)

using a discrete cosine transform (hereafter abbreviated as DCT). In
one special case, however, VP8 uses a Walsh-Hadamard transform
(hereafter abbreviated as WHT) instead of a DCT.

Roughly speaking, such systems reduce datarate by exploiting the
temporal and spatial coherence of most video signals. It is more
efficient to specify the location of a visually similar portion of a

prior frame than it is to specify pixel values. The frequency
segregation provided by the DCT and WHT facilitates the exploitation
of both spatial coherence in the original signal and the tolerance of
the human visual system to moderate losses of fidelity in the
reconstituted signal.

VP8 augments these basic concepts with, among other things,

sophisticated usage of contextual probabilities. The result is a
significant reduction in datarate at a given quality.
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Unlike some similar schemes (the older MPEG formats, for example),
VP8 specifies exact values for reconstructed pixels. Specifically,

the specification for the DCT and WHT portions of the reconstruction
does not allow for any "drift" caused by truncation of fractions.
Rather, the algorithm is specified using fixed-precision integer
operations exclusively. This greatly facilitates the verification of

the correctness of a decoder implementation and also avoids
difficult-to-predict visual incongruities between such

implementations.

It should be remarked that, in a complete video playback system, the
displayed frames may or may not be identical to the reconstructed
frames. Many systems apply a final level of filtering (commonly
referred to as postprocessing) to the reconstructed frames prior to
viewing. Such postprocessing has no effect on the decoding and
reconstruction of subsequent frames (which are predicted using the
completely specified reconstructed frames) and is beyond the scope of
this document. In practice, the nature and extent of this sort of
postprocessing is dependent on both the taste of the user and on the
computational facilities of the playback environment.

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in RFC 2119 [RFC2119].

2. Format Overview

VP8 works exclusively with an 8-bit YUV 4:2:0 image format. In this
format, each 8-bit pixel in the two chroma planes (U and V)
corresponds positionally to a 2x2 block of 8-bit luma pixels in the

Y plane; coordinates of the upper left corner of the Y block are of
course exactly twice the coordinates of the corresponding chroma
pixels. When we refer to pixels or pixel distances without
specifying a plane, we are implicitly referring to the Y plane or to
the complete image, both of which have the same (full) resolution.

As is usually the case, the pixels are simply a large array of bytes
stored in rows from top to bottom, each row being stored from left to
right. This "left to right" then "top to bottom" raster-scan order

is reflected in the layout of the compressed data as well.

Provision has been made in the VP8 bitstream header for the support
of a secondary YUV color format, in the form of a reserved bit.

Occasionally, at very low datarates, a compression system may decide
to reduce the resolution of the input signal to facilitate efficient
compression. The VP8 data format supports this via optional
upscaling of its internal reconstruction buffer prior to output (this
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is completely distinct from the optional postprocessing discussed

earlier, which has nothing to do with decoding per se). This

upsampling restores the video frames to their original resolution.

In other words, the compression/decompression system can be viewed as
a "black box", where the input and output are always at a given

resolution. The compressor might decide to "cheat" and process the
signal at a lower resolution. In that case, the decompressor needs

the ability to restore the signal to its original resolution.

Internally, VP8 decomposes each output frame into an array of
macroblocks. A macroblock is a square array of pixels whose Y
dimensions are 16x16 and whose U and V dimensions are 8x8.
Macroblock-level data in a compressed frame occurs (and must be
processed) in a raster order similar to that of the pixels comprising
the frame.

Macroblocks are further decomposed into 4x4 subblocks. Every
macroblock has 16 Y subblocks, 4 U subblocks, and 4 V subblocks. Any
subblock-level data (and processing of such data) again occurs in

raster order, this time in raster order within the containing

macroblock.

As discussed in further detail below, data can be specified at the
levels of both macroblocks and their subblocks.

Pixels are always treated, at a minimum, at the level of subblocks,
which may be thought of as the "atoms" of the VP8 algorithm. In
particular, the 2x2 chroma blocks corresponding to 4x4 Y subblocks
are never treated explicitly in the data format or in the algorithm
specification.

The DCT and WHT always operate at a 4x4 resolution. The DCT is used
for the 16Y, 4U, and 4V subblocks. The WHT is used (with some but
not all prediction modes) to encode a 4x4 array comprising the
average intensities of the 16 Y subblocks of a macroblock. These
average intensities are, up to a constant normalization factor,

nothing more than the Oth DCT coefficients of the Y subblocks. This
"higher-level" WHT is a substitute for the explicit specification of
those coefficients, in exactly the same way as the DCT of a subblock
substitutes for the specification of the pixel values comprising the
subblock. We consider this 4x4 array as a second-order subblock
called Y2, and think of a macroblock as containing 24 "real”
subblocks and, sometimes, a 25th "virtual" subblock. This is dealt
with further in Section 13.

The frame layout used by the reference decoder may be found in the
file vpx_image.h (Section 20.23).
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3. Compressed Frame Types
There are only two types of frames in VP8.

Intraframes (also called key frames and, in MPEG terminology,
I-frames) are decoded without reference to any other frame in a
sequence; that is, the decompressor reconstructs such frames
beginning from its "default" state. Key frames provide random access
(or seeking) points in a video stream.

Interframes (also called prediction frames and, in MPEG terminology,
P-frames) are encoded with reference to prior frames, specifically

all prior frames up to and including the most recent key frame.
Generally speaking, the correct decoding of an interframe depends on
the correct decoding of the most recent key frame and all ensuing
frames. Consequently, the decoding algorithm is not tolerant of
dropped frames: In an environment in which frames may be dropped or
corrupted, correct decoding will not be possible until a key frame is
correctly received.

In contrast to MPEG, there is no use of bidirectional prediction. No
frame is predicted using frames temporally subsequent to it; there is
no analog to an MPEG B-frame.

Secondly, VP8 augments these notions with that of alternate
prediction frames, called golden frames and altref frames
(alternative reference frames). Blocks in an interframe may be
predicted using blocks in the immediately previous frame as well as
the most recent golden frame or altref frame. Every key frame is
automatically golden and altref, and any interframe may optionally
replace the most recent golden or altref frame.

Golden frames and altref frames may also be used to partially
overcome the intolerance to dropped frames discussed above: If a
compressor is configured to code golden frames only with reference to
the prior golden frame (and key frame), then the "substream" of key
and golden frames may be decoded regardless of loss of other
interframes. Roughly speaking, the implementation requires (on the
compressor side) that golden frames subsume and recode any context
updates effected by the intervening interframes. A typical

application of this approach is video conferencing, in which
retransmission of a prior golden frame and/or a delay in playback

until receipt of the next golden frame is preferable to a larger
retransmit and/or delay until the next key frame.
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4. Overview of Compressed Data Format

The input to a VP8 decoder is a sequence of compressed frames whose
order matches their order in time. Issues such as the duration of
frames, the corresponding audio, and synchronization are generally
provided by the playback environment and are irrelevant to the
decoding process itself; however, to aid in fast seeking, a start

code is included in the header of each key frame.

The decoder is simply presented with a sequence of compressed frames
and produces a sequence of decompressed (reconstructed) YUV frames
corresponding to the input sequence. As stated in the Introduction,

the exact pixel values in the reconstructed frame are part of VP8's
specification. This document specifies the layout of the compressed
frames and gives unambiguous algorithms for the correct production of
reconstructed frames.

The first frame presented to the decompressor is of course a key
frame. This may be followed by any number of interframes; the
correct reconstruction of each frame depends on all prior frames up
to the key frame. The next key frame restarts this process: The
decompressor resets to its default initial condition upon reception
of a key frame, and the decoding of a key frame (and its ensuing
interframes) is completely independent of any prior decoding.

At the highest level, every compressed frame has three or more
pieces. It begins with an uncompressed data chunk comprising

10 bytes in the case of key frames and 3 bytes for interframes. This
is followed by two or more blocks of compressed data (called
partitions). These compressed data partitions begin and end on byte
boundaries.

The first compressed partition has two subsections:
1. Header information that applies to the frame as a whole.

2. Per-macroblock information specifying how each macroblock is
predicted from the already-reconstructed data that is available
to the decompressor.

As stated above, the macroblock-level information occurs in raster-
scan order.

The rest of the partitions contain, for each block, the DCT/WHT
coefficients (quantized and logically compressed) of the residue

signal to be added to the predicted block values. It typically

accounts for roughly 70% of the overall datarate. VP8 supports
packing the compressed DCT/WHT coefficients’ data from macroblock
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rows into separate partitions. If there is more than one partition
for these coefficients, the sizes of the partitions -- except the

last partition -- in bytes are also present in the bitstream right
after the above first partition. Each of the sizes is a 3-byte data
item written in little endian format. These sizes provide the
decoder direct access to all DCT/WHT coefficient partitions, which
enables parallel processing of the coefficients in a decoder.

The separate partitioning of the prediction data and coefficient data
also allows flexibility in the implementation of a decompressor: An
implementation may decode and store the prediction information for
the whole frame and then decode, transform, and add the residue
signal to the entire frame, or it may simultaneously decode both
partitions, calculating prediction information and adding in the
residue signal for each block in order. The length field in the

frame tag, which allows decoding of the second partition to begin
before the first partition has been completely decoded, is necessary
for the second "block-at-a-time" decoder implementation.

All partitions are decoded using separate instances of the boolean
entropy decoder described in Section 7. Although some of the data
represented within the partitions is conceptually "flat" (a bit is

just a bit with no probabilistic expectation one way or the other),
because of the way such coders work, there is never a direct
correspondence between a "conceptual bit" and an actual physical bit
in the compressed data partitions. Only in the 3- or 10-byte
uncompressed chunk described above is there such a physical
correspondence.

A related matter is that seeking within a partition is not supported.
The data must be decompressed and processed (or at least stored) in
the order in which it occurs in the partition.

While this document specifies the ordering of the partition data
correctly, the details and semantics of this data are discussed in a
more logical fashion to facilitate comprehension. For example, the
frame header contains updates to many probability tables used in
decoding per-macroblock data. The per-macroblock data is often
described before the layouts of the probabilities and their updates,
even though this is the opposite of their order in the bitstream.

5. Overview of the Decoding Process

A VP8 decoder needs to maintain four YUV frame buffers whose
resolutions are at least equal to that of the encoded image. These
buffers hold the current frame being reconstructed, the immediately
previous reconstructed frame, the most recent golden frame, and the
most recent altref frame.
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Most implementations will wish to "pad" these buffers with

"invisible" pixels that extend a moderate number of pixels beyond all
four edges of the visible image. This simplifies interframe

prediction by allowing all (or most) prediction blocks -- which are

not guaranteed to lie within the visible area of a prior frame -- to
address usable image data.

Regardless of the amount of padding chosen, the invisible rows above
(or below) the image are filled with copies of the top (or bottom)

row of the image; the invisible columns to the left (or right) of the
image are filled with copies of the leftmost (or rightmost) visible

row; and the four invisible corners are filled with copies of the
corresponding visible corner pixels. The use of these prediction
buffers (and suggested sizes for the halo) will be elaborated on in

the discussion of motion vectors, interframe prediction, and

sub-pixel interpolation later in this document.

As will be seen in the description of the frame header, the image
dimensions are specified (and can change) with every key frame.
These buffers (and any other data structures whose size depends on
the size of the image) should be allocated (or re-allocated)
immediately after the dimensions are decoded.

Leaving most of the details for later elaboration, the following is
an outline of the decoding process.

First, the frame header (the beginning of the first data partition)

is decoded. Altering or augmenting the maintained state of the
decoder, this provides the context in which the per-macroblock data
can be interpreted.

The macroblock data occurs (and must be processed) in raster-scan
order. This data comes in two or more parts. The first (prediction
or mode) part comes in the remainder of the first data partition.

The other parts comprise the data partition(s) for the DCT/WHT
coefficients of the residue signal. For each macroblock, the
prediction data must be processed before the residue.

Each macroblock is predicted using one (and only one) of four
possible frames. All macroblocks in a key frame, and all intra-coded
macroblocks in an interframe, are predicted using the already-decoded
macroblocks in the current frame. Macroblocks in an interframe may
also be predicted using the previous frame, the golden frame, or the
altref frame. Such macroblocks are said to be inter-coded.
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The purpose of prediction is to use already-constructed image data to
approximate the portion of the original image being reconstructed.
The effect of any of the prediction modes is then to write a
macroblock-sized prediction buffer containing this approximation.

Regardless of the prediction method, the residue DCT signal is
decoded, dequantized, reverse-transformed, and added to the
prediction buffer to produce the (almost final) reconstruction value
of the macroblock, which is stored in the correct position of the
current frame buffer.

The residue signal consists of 24 (sixteen Y, four U, and four V) 4x4
guantized and losslessly compressed DCT transforms approximating the
difference between the original macroblock in the uncompressed source
and the prediction buffer. For most prediction modes, the Oth
coefficients of the sixteen Y subblocks are expressed via a 25th WHT

of the second-order virtual Y2 subblock discussed above.

Intra-prediction exploits the spatial coherence of frames. The 16x16
luma (YY) and 8x8 chroma (UV) components are predicted independently
of each other using one of four simple means of pixel propagation,
starting from the already-reconstructed (16-pixel-long luma, 8-pixel-
long chroma) row above, and column to the left of, the current
macroblock. The four methods are:

1. Copying the row from above throughout the prediction buffer.

2. Copying the column from the left throughout the prediction
buffer.

3. Copying the average value of the row and column throughout the
prediction buffer.

4. Extrapolation from the row and column using the (fixed) second
difference (horizontal and vertical) from the upper left corner.

Additionally, the sixteen Y subblocks may be predicted independently

of each other using one of ten different modes, four of which are 4x4
analogs of those described above, augmented with six "diagonal”
prediction methods. There are two types of predictions, one intra

and one prediction (among all the modes), for which the residue

signal does not use the Y2 block to encode the DC portion of the

sixteen 4x4 Y subblock DCTs. This "independent Y subblock” mode has
no effect on the 8x8 chroma prediction.
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Inter-prediction exploits the temporal coherence between nearby
frames. Except for the choice of the prediction frame itself, there

is no difference between inter-prediction based on the previous frame
and that based on the golden frame or altref frame.

Inter-prediction is conceptually very simple. While, for reasons of
efficiency, there are several methods of encoding the relationship
between the current macroblock and corresponding sections of the
prediction frame, ultimately each of the sixteen Y subblocks is

related to a 4x4 subblock of the prediction frame, whose position in
that frame differs from the current subblock position by a (usually
small) displacement. These two-dimensional displacements are called
motion vectors.

The motion vectors used by VP8 have quarter-pixel precision.
Prediction of a subblock using a motion vector that happens to have
integer (whole number) components is very easy: The 4x4 block of
pixels from the displaced block in the previous, golden, or altref
frame is simply copied into the correct position of the current
macroblock’s prediction buffer.

Fractional displacements are conceptually and implementationally more
complex. They require the inference (or synthesis) of sample values
that, strictly speaking, do not exist. This is one of the most basic
problems in signal processing, and readers conversant with that
subject will see that the approach taken by VP8 provides a good
balance of robustness, accuracy, and efficiency.

Leaving the details for the implementation discussion below, the
pixel interpolation is calculated by applying a kernel filter (using
reasonable-precision integer math) three pixels on either side, both
horizontally and vertically, of the pixel to be synthesized. The
resulting 4x4 block of synthetic pixels is then copied into position
exactly as in the case of integer displacements.

Each of the eight chroma subblocks is handled similarly. Their
motion vectors are never specified explicitly; instead, the motion
vector for each chroma subblock is calculated by averaging the
vectors of the four Y subblocks that occupy the same area of the
frame. Since chroma pixels have twice the diameter (and four times
the area) of luma pixels, the calculated chroma motion vectors have
1/8-pixel resolution, but the procedure for copying or generating
pixels for each subblock is essentially identical to that done in the
luma plane.
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After all the macroblocks have been generated (predicted and

corrected with the DCT/WHT residue), a filtering step (the loop

filter) is applied to the entire frame. The purpose of the loop

filter is to reduce blocking artifacts at the boundaries between
macroblocks and between subblocks of the macroblocks. The term "loop
filter" is used because this filter is part of the "coding loop";

that is, it affects the reconstructed frame buffers that are used to

predict ensuing frames. This is distinguished from the

postprocessing filters discussed earlier, which affect only the

viewed video and do not "feed into" subsequent frames.

Next, if signaled in the data, the current frame may replace the
golden frame prediction buffer and/or the altref frame buffer.

The halos of the frame buffers are next filled as specified above.
Finally, at least as far as decoding is concerned, the (references
to) the "current” and "last" frame buffers should be exchanged in
preparation for the next frame.

Various processes may be required (or desired) before viewing the
generated frame. As discussed in the frame dimension information
below, truncation and/or upscaling of the frame may be required.
Some playback systems may require a different frame format (RGB,
YUY?2, etc.). Finally, as mentioned in the Introduction, further
postprocessing or filtering of the image prior to viewing may be
desired. Since the primary purpose of this document is a decoding
specification, the postprocessing is not specified in this document.

While the basic ideas of prediction and correction used by VP8 are
straightforward, many of the details are quite complex. The
management of probabilities is particularly elaborate. Not only do
the various modes of intra-prediction and motion vector specification
have associated probabilities, but they, together with the coding of
DCT coefficients and motion vectors, often base these probabilities
on a variety of contextual information (calculated from what has been
decoded so far), as well as on explicit modification via the frame
header.

The "top-level" of decoding and frame reconstruction is implemented
in the reference decoder file dixie.c (Section 20.4).

This concludes our summary of decoding and reconstruction; we
continue by discussing the individual aspects in more depth.

A reasonable "divide and conquer" approach to implementation of a
decoder is to begin by decoding streams composed exclusively of key
frames. After that works reliably, interframe handling can be added
more easily than if complete functionality were attempted
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immediately. In accordance with this, we first discuss components
needed to decode key frames (most of which are also used in the
decoding of interframes) and conclude with topics exclusive to
interframes.

6. Description of Algorithms

As the intent of this document, together with the reference decoder
source code, is to specify a platform-independent procedure for the
decoding and reconstruction of a VP8 video stream, many (small)
algorithms must be described exactly.

Due to its near-universality, terseness, ability to easily describe
calculation at specific precisions, and the fact that On2’s reference
VP8 decoder is written in C, these algorithm fragments are written
using the C programming language, augmented with a few simple
definitions below.

The standard (and best) reference for C is [Kernighan].

Many code fragments will be presented in this document. Some will be
nearly identical to corresponding sections of the reference decoder;
others will differ. Roughly speaking, there are three reasons for

such differences:

1. For reasons of efficiency, the reference decoder version may be
less obvious.

2. The reference decoder often uses large data structures to
maintain context that need not be described or used here.

3. The authors of this document felt that a different expression of
the same algorithm might facilitate exposition.

Regardless of the chosen presentation, the calculation effected by
any of the algorithms described here is identical to that effected by
the corresponding portion of the reference decoder.

All VP8 decoding algorithms use integer math. To facilitate
specification of arithmetic precision, we define the following types.

---- Begin code block

typedef signed char int8; /* signed int exactly 8 bits wide */
typedef unsigned char uint8; /* unsigned " */

typedef short int16; [* signed int exactly 16 bits wide */
typedef unsigned int16 uintl6; /* unsigned "™ */
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/*int32 is a signed integer type at least 32 bits wide */

typedef long int32; /* guaranteed to work on all systems */
typedef int int32; /* will be more efficient on some systems */

typedef unsigned int32 uint32;

/* unsigned integer type, at least 16 bits wide, whose exact size
iS most convenient to whatever processor we are using */

typedef unsigned int uint;

/* While pixels themselves are 8-bit unsigned integers,
pixel arithmetic often occurs at 16- or 32-bit precision and
the results need to be "saturated" or clamped to an 8-bit
range. */

typedef uint8 Pixel;

Pixel clamp255(int32 v) { return v < 0? 0 : (v < 2557 v : 255);}

/* As is elaborated in the discussion of the bool_decoder below,
VP8 represents probabilities as unsigned 8-bit numbers. */

typedef uint8 Prob;

---- End code block

We occasionally need to discuss mathematical functions involving
honest-to-goodness "infinite precision” real numbers. The DCT is
first described via the cosine function cos; the ratio of the lengths
of the circumference and diameter of a circle is denoted pi; at one
point, we take a (base 1/2) logarithm, denoted log; and pow(x, y)
denotes x raised to the powery. If x =2 and y is a small
non-negative integer, pow(2, y) may be expressed in Cas 1 <<vy.

Finally, we sometimes need to divide signed integers by powers of
two; that is, we occasionally right-shift signed numbers. The
behavior of such shifts (i.e., the propagation of the sign bit) is,
perhaps surprisingly, not defined by the C language itself and is

left up to individual compilers. Because of the utility of this
frequently needed operation, it is at least arguable that it should

be defined by the language (to naturally propagate the sign bit) and,
at a minimum, should be correctly implemented by any reasonable
compiler. In the interest of strict portability, we attempt to call
attention to these shifts when they arise.
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7. Boolean Entropy Decoder

As discussed in the overview above, essentially the entire VP8 data
stream is encoded using a boolean entropy coder.

An understanding of the bool_decoder is critical to the

implementation of a VP8 decompressor, so we discuss the bool_decoder
in detail. It is easier to comprehend the bool_decoder in

conjunction with the bool_encoder used by the compressor to write the
compressed data partitions.

The bool_encoder encodes (and the bool_decoder decodes) one bool
(zero-or-one boolean value) at a time. Its purpose is to losslessly
compress a sequence of bools for which the probability of their being
zero or one can be well-estimated (via constant or previously coded
information) at the time they are written, using identical

corresponding probabilities at the time they are read.

As the reader is probably aware, if a bool is much more likely to be
zero than one (for instance), it can, on average, be faithfully
encoded using much less than one bit per value. The bool_encoder
exploits this.

In the 1940s, [Shannon] proved that there is a lower bound for the
average datarate of a faithful encoding of a sequence of bools (whose
probability distributions are known and are independent of each
other) and also that there are encoding algorithms that approximate
this lower bound as closely as one wishes.

If we encode a sequence of bools whose probability of being zero is p
(and whose probability of being 1 is 1-p), the lowest possible
datarate per value is

plog(p) + (1-p)log(1-p);

taking the logarithms to the base 1/2 expresses the datarate in bits/
value.

We give two simple examples. At one extreme, if p = 1/2, then log(p)
=log(1-p) = 1, and the lowest possible datarate per bool is 1/2 +

1/2 = 1; that is, we cannot do any better than simply literally

writing out bits. At another extreme, if p is very small, say p =
1/1024, then log(p)=10, log(1-p) is roughly .0014, and the lowest
possible datarate is approximately 10/1024 + .0014, roughly 1/100 of
a bit per bool.
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Because most of the bools in the VP8 datastream have zero-
probabilities nowhere near 1/2, the compression provided by the
bool_encoder is critical to the performance of VP8.

The boolean coder used by VP8 is a variant of an arithmetic coder.
An excellent discussion of arithmetic coding (and other lossless
compression techniques) can be found in [Bell].

7.1. Underlying Theory of Coding

The basic idea used by the boolean coder is to consider the entire
data stream (either of the partitions in our case) as the binary
expansion of a single number x with 0 <= x < 1. The bits (or bytes)
in x are of course written from high to low order, and if b[j] (B[j])

is the jA(th) bit (byte) in the partition, the value x is simply the

sum (starting with j = 1) of pow(2, -j) * b[j] or pow(2586, -j) *

B[jl.

Before the first bool is coded, all values of x are possible.

The coding of each bool restricts the possible values of x in
proportion to the probability of what is coded. If p1 is the
probability of the first bool being zero and a zero is coded, the
range of possible values of x is restricted to 0 <= x < pl. If aone
is coded, the range becomes pl <=x < 1.

The coding continues by repeating the same idea. At every stage,
there is an interval a <= x < b of possible values of x. If p is the
probability of a zero being coded at this stage and a zero is coded,
the interval becomes a <= x < a + (p(b-a)). If a one is coded, the
possible values of x are restricted to a + (p(b-a)) <=x < b.

Assuming that only finitely many values are to be coded, after the
encoder has received the last bool, it can write as its output any
value x that lies in the final interval. VP8 simply writes the left
endpoint of the final interval. Consequently, the output it would
make if encoding were to stop at any time either increases or stays
the same as each bool is encoded.

Decoding parallels encoding. The decoder is presented with the
number X, which has only the initial restriction 0 <=x< 1. To
decode the first bool, the decoder is given the first probability p1.
If x < pl, a zero is decoded; if x >= p1, a one is decoded. In
either case, the new restriction on x -- that is, the interval of
possible values of x -- is remembered.
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Decoding continues in exactly the same way: If a <= x < b is the
current interval and we are to decode a bool with zero-probability p,
we return a zero if a <= x < a + (p(b-a)) and a one if a + (p(b-a))
<=x < b. In either case, the new restriction is remembered in
preparation for decoding the next bool.

The process outlined above uses real numbers of infinite precision to
express the probabilities and ranges. It is true that, if one could
actualize this process and coded a large number of bools whose
supplied probabilities matched their value distributions, the

datarate achieved would approach the theoretical minimum as the
number of bools encoded increased.

Unfortunately, computers operate at finite precision, and an
approximation to the theoretically perfect process described above is
necessary. Such approximation increases the datarate but, at quite
moderate precision and for a wide variety of data sets, this increase
is negligible.

The only conceptual limitations are, first, that coder probabilities
must be expressed at finite precision and, second, that the decoder
be able to detect each individual modification to the value interval
via examination of a fixed amount of input. As a practical matter,
many of the implementation details stem from the fact that the coder
can function using only a small "window" to incrementally read or
write the arbitrarily precise number x.

7.2. Practical Algorithm Description

VP8's boolean coder works with 8-bit probabilities p. The range of
such p is 0 <= p <= 255; the actual probability represented by p is
p/256. Also, the coder is designed so that decoding of a bool

requires no more than an 8-bit comparison, and so that the state of
both the encoder and decoder can be easily represented using a small
number of unsigned 16-bit integers.

The details are most easily understood if we first describe the
algorithm using bit-at-a-time input and output. Aside from the
ability to maintain a position in this bitstream and write/read bits,
the encoder also needs the ability to add 1 to the bits already
output; after writing n bits, adding 1 to the existing output is the
same thing as adding pow(2, -n) to x.
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Together with the bit position, the encoder must maintain two
unsigned 8-bit numbers, which we call "bottom" and "range”. Writing
w for the n bits already written and S = pow(2, - n - 8) for the

scale of the current bit position one byte out, we have the following
constraint on all future values v of w (including the final value

vV =X):

w + (S *bottom ) <=v<w+ (S *(bottom + range ) )

Thus, appending bottom to the already-written bits w gives the left
endpoint of the interval of possible values, appending bottom + range
gives the right endpoint, and range itself (scaled to the current
output position) is the length of the interval.

So that our probabilistic encodings are reasonably accurate, we do
not let range vary by more than a factor of two: It stays within the
bounds 128 <= range <= 255.

The process for encoding a boolean value val whose probability of
being zero is prob / 256 -- and whose probability of being one is
(256 - prob ) / 256 -- with 1 <= prob <= 255 is as follows.

Using an unsigned 16-bit multiply followed by an unsigned right
shift, we calculate an unsigned 8-bit split value:

split =1 + (((range - 1) * probability)]] >> 8)

split is approximately ( prob / 256 ) * range and lies within the
bounds 1 <= split <=range - 1. These bounds ensure the correctness
of the decoding procedure described below.

If the incoming boolean val to be encoded is false, we leave the left
interval endpoint bottom alone and reduce range, replacing it by
split. If the incoming val is true, we move up the left endpoint to
bottom + split, propagating any carry to the already-written value w
(this is where we need the ability to add 1 to w), and reduce range
to range - split.

Regardless of the value encoded, range has been reduced and now has
the bounds 1 <= range <= 254. If range < 128, the encoder doubles it
and shifts the high-order bit out of bottom to the output as it also
doubles bottom, repeating this process one bit at a time until 128 <=
range <= 255. Once this is completed, the encoder is ready to accept
another bool, maintaining the constraints described above.

After encoding the last bool, the partition may be completed by
appending bottom to the bitstream.
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The decoder mimics the state of the encoder. It maintains, together
with an input bit position, two unsigned 8-bit numbers, a range
identical to that maintained by the encoder and a value. Decoding
one bool at a time, the decoder (in effect) tracks the same left
interval endpoint as does the encoder and subtracts it from the
remaining input. Appending the unread portion of the bitstream to
the 8-bit value gives the difference between the actual value encoded
and the known left endpoint.

The decoder is initialized by setting range = 255 and reading the
first 16 input bits into value. The decoder maintains range and
calculates split in exactly the same way as does the encoder.

To decode a bool, it compares value to split; if value < split, the
bool is zero, and range is replaced with split. If value >= split,
the bool is one, range is replaced with range - split, and value is
replaced with value - split.

Again, range is doubled one bit at a time until it is at least 128.
The value is doubled in parallel, shifting a new input bit into the
bottom each time.

Writing Value for value together with the unread input bits and Range
for range extended indefinitely on the right by zeros, the condition
Value < Range is maintained at all times by the decoder. In
particular, the bits shifted out of value as it is doubled are always
zero.

7.3. Actual Implementation

The C code below gives complete implementations of the encoder and
decoder described above. While they are logically identical to the
"bit-at-a-time" versions, they internally buffer a couple of extra

bytes of the bitstream. This allows 1/O to be done (more

practically) a byte at a time and drastically reduces the number of
carries the encoder has to propagate into the already-written data.

Another (logically equivalent) implementation may be found in the
reference decoder file bool_decoder.h (Section 20.2).
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---- Begin code block
/* Encoder first */

typedef struct {
uint8 *output; /* ptr to next byte to be written */
uint32 range; /* 128 <=range <= 255 */
uint32 bottom; /* minimum value of remaining output */
int bit_count; /* # of shifts before an output byte
is available */
} bool_encoder;

/* Must set initial state of encoder before writing any bools. */

void init_bool_encoder(bool_encoder *e, uint8 *start_partition)
{

e->output = start_partition;

e->range = 255;

e->bottom = 0;

e->hbit_count = 24;

}

/* Encoding very rarely produces a carry that must be propagated
to the already-written output. The arithmetic guarantees that
the propagation will never go beyond the beginning of the
output. Put another way, the encoded value x is always less
than one. */

void add_one_to_output(uint8 *q)
while (*--q == 255)
*q — 0,

*y
++*4Q;

}

/* Main function writes a bool_value whose probability of being
zero is (expected to be) prob/256. */

void write_bool(bool_encoder *e, Prob prob, int bool_value)
/* split is approximately (range * prob) / 256 and,
crucially, is strictly bigger than zero and strictly
smaller than range */

uint32 split = 1 + (((e->range - 1) * prob) >> 8);
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if (bool_value) {

e->bottom += split; /* move up bottom of interval */

e->range -= split; /* with corresponding decrease in range */
} else

e->range = split; /* decrease range, leaving bottom alone */

while (e->range < 128)
e->range <<= 1,

if (e->bottom & (1 << 31)) /* detect carry */
add_one_to_output(e->output);

e->bottom <<= 1, [* before shifting bottom */

if (!--e->bit_count) { /* write out high byte of bottom ... */
*e->output++ = (uint8) (e->bottom >> 24);
e->bottom &= (1 << 24) - 1; /* ... keeping low 3 bytes */

e->bit_count = 8; /* 8 shifts until next output */
}

}
}

/* Call this function (exactly once) after encoding the last
bool value for the partition being written */

void flush_bool_encoder(bool_encoder *e)

{
int ¢c = e->bit_count;
uint32 v = e->bottom;

if (v& (1<<(32-c))) [/*propagate (unlikely) carry */
add_one_to_output(e->output);

V<<=C&7; * before shifting remaining output */
c>>=3; /* to top of internal buffer */
while (--c >= 0)
vV <<= 8§;
c=4;

while (--c >=0){ /* write remaining data, possibly padded */
*e->output++ = (Uint8) (v >> 24);
v <<= §;
}
}
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/* Decoder state exactly parallels that of the encoder.
"value", together with the remaining input, equals the
complete encoded number x less the left endpoint of the
current coding interval. */

typedef struct {
uint8 *input; /* pointer to next compressed data byte */
uint32 range; /* always identical to encoder’s range */
uint32 value;  /* contains at least 8 significant bits */
int  bit_count; /*# of bits shifted out of
value, at most 7 */
} bool_decoder;

/* Call this function before reading any bools from the
partition. */

void init_bool_decoder(bool_decoder *d, uint8 *start_partition)

{
{
inti=0;
d->value = 0; [* value = first 2 input bytes */
while (++i <= 2)

d->value = (d->value << 8) | *start_partition++;

}

d->input = start_partition; /* ptr to next byte to be read */

d->range = 255; /* initial range is full */

d->bit_count = 0; /* have not yet shifted out any bits */
}

/* Main function reads a bool encoded at probability prob/256,
which of course must agree with the probability used when the
bool was written. */

int read_bool(bool_decoder *d, Prob prob)

/* range and split are identical to the corresponding values
used by the encoder when this bool was written */

uint32 split=1 + (((d->range - 1) * prob) >> 8);

uint32 SPLIT = split << 8;
int  retval; /*willbe 0 or 1 */
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if (d->value >= SPLIT) { /* encoded a one */

retval = 1;

d->range -= split; /* reduce range */

d->value -= SPLIT; /* subtract off left endpoint of interval */
}else { /* encoded a zero */

retval = 0;

d->range = split; /* reduce range, no change in left endpoint */

}

while (d->range < 128) { /* shift out irrelevant value bits */
d->value <<=1;
d->range <<=1;
if (++d->bit_count == 8) { /* shift in new bits 8 at a time */
d->bit_count = 0;
d->value |= *d->input++;

}

return retval;

}

/* Convenience function reads a "literal", that is, a "num_bits"-
wide unsigned value whose bits come high- to low-order, with
each bit encoded at probability 128 (i.e., 1/2). */

uint32 read_literal(bool_decoder *d, int num_bits)
uint32 v =0;

while (num_bits--)
v = (v<<1)+read_bool(d, 128);
return v;

}

/* Variant reads a signed number */

int32 read_signed_literal(bool_decoder *d, int num_bits)
{
int32 v=0;
if ('num_bits)
return O;
if (read_bool(d, 128))
v=-1,
while (--num_bits)
v = (v<<1)+read_bool(d, 128);
return v;

}
---- End code block
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8. Compressed Data Components

At the lowest level, VP8's compressed data is simply a sequence of
probabilistically encoded bools. Most of this data is composed of
(slightly) larger semantic units fashioned from bools, which we
describe here.

We sometimes use these descriptions in C expressions within data
format specifications. In this context, they refer to the return

value of a call to an appropriate bool_decoder d, reading (as always)
from its current reference point.

+ + + +
| Call | Alt. | Return |
+ + + +

| Bool(p) | B(p) | Bool with probability p/256 of being 0. |
| | | Return value of read_bool(d, p). |
| |
| Flag | F | A one-bit flag (same thing as a B(128) or |
| | an L(1)). Abbreviated F. Return value of |
| | read_bool(d, 128). |

|

|

| Lit(n) | L(n) | Unsigned n-bit number encoded as n flags |
| | | (a"literal"). Abbreviated L(n). The |

| | | bits are read from high to low order. |

| | | Return value of read_literal(d, n). |

| |

| SignedLit(n) | | Signed n-bit number encoded similarly to |
| | | an L(n). Return value of

| | | read_signed_literal(d, n). These are |

| | | rare. |

| | |

| P(8) | | An 8-bit probability. No different from |

| | | an L(8), but we sometimes use this |

| | | notation to emphasize that a probability |

| | | is being coded. |
| |
|
|
|
|
|
|
|
|

I |
P(7) | | A 7-bit specification of an 8-bit |
| | probability. Coded as an L(7) number x; |
| | the resulting 8-bit probability is x ? x |
| |<<1:1. |
|

I |
F? X | | A flag that, if true, is followed by a |
| | piece of data X. |
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F? XY | | A flag that, if true, is followed by X |
| and, if false, is followed by Y. Also |
| used to express a value where Yisan |
| implicit default (not encoded in the data |
| stream), as in F? P(8):255, which |
| expresses an optional probability: If the |
| flag is true, the probability is specified |
| as an 8-bit literal, while if the flag is |
| false, the probability defaults to 255. |
|
B(p)? X | B(p)? | Variants of the above using a boolean |
| X:Y | indicator whose probability is not |
| | necessarily 128. |
|

T | | Tree-encoded value from small alphabet. |

4
T

4
T

The last type requires elaboration. We often wish to encode
something whose value is restricted to a small number of
possibilities (the alphabet).

This is done by representing the alphabet as the leaves of a small
binary tree. The (non-leaf) nodes of the tree have associated
probabilities p and correspond to calls to read_bool(d, p). We think
of a zero as choosing the left branch below the node and a one as
choosing the right branch.

Thus, every value (leaf) whose tree depth is x is decoded after
exactly x calls to read_bool.

A tree representing an encoding of an alphabet of n possible values
always contains n-1 non-leaf nodes, regardless of its shape (this is
easily seen by induction on n).

There are many ways that a given alphabet can be so represented. The
choice of tree has little impact on datarate but does affect decoder
performance. The trees used by VP8 are chosen to (on average)
minimize the number of calls to read_bool. This amounts to shaping

the tree so that values that are more probable have smaller tree

depth than do values that are less probable.

Readers familiar with Huffman coding will notice that, given an

alphabet together with probabilities for each value, the associated
Huffman tree minimizes the expected number of calls to read_bool.
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Such readers will also realize that the coding method described here
never results in higher datarates than does the Huffman method and,
indeed, often results in much lower datarates. Huffman coding is, in
fact, nothing more than a special case of this method in which each
node probability is fixed at 128 (i.e., 1/2).

8.1. Tree Coding Implementation

We give a suggested implementation of a tree data structure followed
by a couple of actual examples of its usage by VP8.

It is most convenient to represent the values using small positive
integers, typically an enum counting up from zero. The largest
alphabet (used to code DCT coefficients, described in Section 13)

that is tree-coded by VP8 has only 12 values. The tree for this
alphabet adds 11 interior nodes and so has a total of 23 positions.
Thus, an 8-bit number easily accommodates both a tree position and a
return value.

A tree may then be compactly represented as an array of (pairs of)
8-bit integers. Each (even) array index corresponds to an interior
node of the tree; the Oth index of course corresponds to the root of
the tree. The array entries come in pairs corresponding to the left
(0) and right (1) branches of the subtree below the interior node.
We use the convention that a positive (even) branch entry is the
index of a deeper interior node, while a nonpositive entry v
corresponds to a leaf whose value is -v.

The node probabilities associated to a tree-coded value are stored in
an array whose indices are half the indices of the corresponding tree
positions. The length of the probability array is one less than the
size of the alphabet.

Here is C code implementing the foregoing. The advantages of our
data structure should be noted. Aside from the smallness of the
structure itself, the tree-directed reading algorithm is essentially

a single line of code.
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---- Begin code block
/* A tree specification is simply an array of 8-bit integers. */

typedef int8 tree_index;
typedef const tree_index Tree[];

/* Read and return a tree-coded value at the current decoder
position. */

int treed_read(
bool_decoder * const d, /* bool_decoder always returns a 0 or 1 */
Tree t, [* tree specification */
const Prob p[]  /* corresponding interior node probabilities */

){
register tree_index i = 0; /* begin at root */
/* Descend tree until leaf is reached */

while ((i = [ i + read_bool(d, p[i>>1])]) > 0) {}

return -i;  /* return value is negation of honpositive index */

}
---- End code block

Tree-based decoding is implemented in the reference decoder file
bool_decoder.h (Section 20.2).

8.2. Tree Coding Example

As a multi-part example, without getting too far into the semantics
of macroblock decoding (which is of course taken up below), we look
at the "mode" coding for intra-predicted macroblocks.

It so happens that, because of a difference in statistics, the Y (or

luma) mode encoding uses two different trees: one for key frames and
another for interframes. This is the only instance in VP8 of the

same dataset being coded by different trees under different
circumstances. The UV (or chroma) modes are a proper subset of the Y
modes and, as such, have their own decoding tree.
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---- Begin code block
typedef enum

DC_PRED, /* predict DC using row above and column to the left */
V_PRED, /* predict rows using row above */

H_PRED, /* predict columns using column to the left */
TM_PRED, /* propagate second differences a la "True Motion" */

B_PRED, /* each Y subblock is independently predicted */

num_uv_modes = B_PRED, /* first four modes apply to chroma */
num_ymodes /* all modes apply to luma */

intra_mbmode;

/* The aforementioned trees together with the implied codings as
comments.
Actual (i.e., positive) indices are always even.
Value (i.e., nonpositive) indices are arbitrary. */

const tree_index ymode_tree [2 * (hum_ymodes - 1)] =

-DC_PRED, 2, /* root: DC_PRED ="0", "1" subtree */
4,6, [*"1" subtree has 2 descendant subtrees */
-V_PRED, -H_PRED, /*"10" subtree: V_PRED = "100",
H_PRED ="101"*/
-TM_PRED, -B_PRED /* "11" subtree: TM_PRED = "110",
B_PRED ="111"%*/

2

const tree_index kf_ymode_tree [2 * (num_ymodes - 1)] =

{

-B_PRED, 2, /* root: B_PRED ="0", "1" subtree */
4, 6, /*"1" subtree has 2 descendant subtrees */

-DC_PRED, -V_PRED, /*"10" subtree: DC_PRED = "100",
V_PRED ="101" */
-H_PRED, -TM_PRED /*"11" subtree: H_PRED = "110",
TM_PRED = "111" %/
h
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const tree_index uv_mode_tree [2 * (hum_uv_modes - 1)] =

-DC_PRED, 2, /* root: DC_PRED ="0", "1" subtree */
-V_PRED, 4, /*"1" subtree: V_PRED ="10",
"11" subtree */
-H_PRED, -TM_PRED /*"11" subtree: H_PRED = "110",
TM_PRED ="111"*/
3

/* Given a bool_decoder d, a Y mode might be decoded as follows. */

const Prob pretend_its_huffman [num_ymodes - 1] =
{128, 128, 128, 128};

Ymode = (intra_mbmode) treed_read(d, ymode_tree,
pretend_its_huffman);

---- End code block

Since it greatly facilitates re-use of reference code, and since

there is no real reason to do otherwise, it is strongly suggested

that any decoder implementation use exactly the same enumeration
values and probability table layouts as those described in this
document (and in the reference code) for all tree-coded data in VP8.

9. Frame Header
The uncompressed data chunk at the start of each frame and at the
first part of the first data partition contains information
pertaining to the frame as a whole. We list the fields in the order
of occurrence. Most of the header decoding occurs in the reference
decoder file dixie.c (Section 20.4).

9.1. Uncompressed Data Chunk

The uncompressed data chunk comprises a common (for key frames and
interframes) 3-byte frame tag that contains four fields, as follows:

1. A 1-bit frame type (O for key frames, 1 for interframes).
2. A 3-bit version number (0 - 3 are defined as four different

profiles with different decoding complexity; other values may be
defined for future variants of the VP8 data format).
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3. A 1-bit show_frame flag (0 when current frame is not for display,
1 when current frame is for display).

4. A 19-bit field containing the size of the first data partition in
bytes.

The version number setting enables or disables certain features in
the bitstream, as follows:

+ + 4 +

| Version | Reconstruction Filter | Loop Filter |

Other | Reserved for future use | |

+ 4 +
T T T

+ + + +
|0 | Bicubic | Normal |

I I

[1 | Bilinear | Simple |

I I I |

| 2 | Bilinear | None |

I I I I

|3 | None | None |

I

I

The reference software also adjusts the loop filter based on version
number, as per the table above. Version number 1 implies a "simple"
loop filter, and version numbers 2 and 3 imply no loop filter.

However, the "simple" filter setting in this context has no effect
whatsoever on the decoding process, and the "no loop filter" setting
only forces the reference encoder to set filter level equal to 0.

Neither affect the decoding process. In decoding, the only loop

filter settings that matter are those in the frame header.

For key frames, the frame tag is followed by a further 7 bytes of
uncompressed data, as follows:

---- Begin code block
Start code byte 0  0x9d
Start code byte 1 0x01
Start code byte 2 0x2a

16 bits : (2 bits Horizontal Scale << 14) | Width (14 bits)
16 bits : (2 bits Vertical Scale << 14) | Height (14 bits)

---- End code block
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The following source code segment illustrates validation of the start
code and reading the width, height, and scale factors for a key
frame.

---- Begin code block
unsigned char *c = phi->source+3;

/I vet via sync code

if (c[0]'=0x9d||c[1]!=0x01||c[2]!=0x2a)

return -1;

---- End code block

Where pbi->source points to the beginning of the frame.

The following code reads the image dimension from the bitstream:

---- Begin code block

pc->Width = swap2(*(unsigned short*)(c+3))&O0x3fff;
pc->horiz_scale = swap2(*(unsigned short*)(c+3))>>14;
pc->Height = swap2(*(unsigned short*)(c+5))&0x3fff;
pc->vert_scale = swap2(*(unsigned short*)(c+5))>>14;

---- End code block

Where the swap2 macro takes care of the endian on a different
platform:

---- Begin code block

#if defined(__ppc__ ) || defined(__ppc64_ )
# define swap2(d) \
((d&0x000000ff)<<8) | \
((d&0x0000ff00)>>8)
#else
# define swap2(d) d
#endif

---- End code block

While each frame is encoded as a raster scan of 16x16 macroblocks,
the frame dimensions are not necessarily evenly divisible by 16. In
this case, write ew = 16 - (width & 15) and eh = 16 - (height & 15)

for the excess width and height, respectively. Although they are
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encoded, the last ew columns and eh rows are not actually part of the
image and should be discarded before final output. However, these
"excess pixels" should be maintained in the internal reconstruction
buffer used to predict ensuing frames.

The scaling specifications for each dimension are encoded as follows.

+ +
Value | Scaling |

+ 4

0 | No upscaling (the most common case). |
1 | Upscale by 5/4. |

I I
2 | Upscale by 5/3. |

+
|
|
|
|
|
|
| 3 | Upscale by 2. |
+ +

Upscaling does not affect the reconstruction buffer, which should be
maintained at the encoded resolution. Any reasonable method of
upsampling (including any that may be supported by video hardware in
the playback environment) may be used. Since scaling has no effect
on decoding, we do not discuss it any further.

As discussed in Section 5, allocation (or re-allocation) of data
structures (such as the reconstruction buffer) whose size depends on
dimension will be triggered here.

9.2. Color Space and Pixel Type (Key Frames Only)

+ + +
| Field | Value |

+
T

| L(1) | 1-bit color space type specification |

| L(1) | 1-bit pixel value clamping specification |
+ + +

The color space type bit is encoded as follows:

0 0- YUV color space similar to the YCrCb color space defined in
[ITU-R_BT.601]

o 1 - Reserved for future use
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The pixel value clamping type bit is encoded as follows:

o 0 - Decoders are required to clamp the reconstructed pixel values
to between 0 and 255 (inclusive).

o 1 - Reconstructed pixel values are guaranteed to be between 0 and
255; no clamping is necessary.

Information in this subsection does not appear in interframes.
9.3. Segment-Based Adjustments

This subsection contains probability and value information for
implementing segment adaptive adjustments to default decoder
behavior. The data in this subsection is used in the decoding of the
ensuing per-segment information and applies to the entire frame.

When segment adaptive adjustments are enabled, each macroblock will
be assigned a segment ID. Macroblocks with the same segment ID
belong to the same segment and have the same adaptive adjustments
over default baseline values for the frame. The adjustments can be
qguantizer level or loop filter strength.

The context for decoding this feature at the macroblock level is
provided by a subsection in the frame header, which contains:

1. A segmentation_enabled flag that enables the feature for this
frame if set to 1, and disables it if set to 0. The following
fields occur if the feature is enabled.

2. L(2) indicates if the segment map is updated for the current
frame (update_mb_segmentation_map).

3. L(1) indicates if the segment feature data items are updated for
the current frame (update_segment_feature data).

4. If Item 3 above (update_segment_feature_data) is 1, the following
fields occur:

a. L(1), the mode of segment feature data

(segment_feature_mode), can be absolute-value mode (0) or
delta value mode (1).
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b. Segment feature data items are decoded segment by segment for
each segment feature. For every data item, a one-bit flag
indicates whether the item is 0, or a non-zero value to be
decoded. If the value is non-zero, then the value is decoded
as a magnitude L(n), followed by a one-bit sign (L(1) -- O
for positive and 1 for negative). The length n can be looked
up from a pre-defined length table for all feature data.

5. If the L(1) flag as noted in Item 2 above is set to 1, the
probabilities of the decoding tree for the segment map are
decoded from the bitstream. Each probability is decoded with a
one-bit flag indicating whether the probability is the default
value of 255 (flag is set to 0), or an 8-bit value, L(8), from
the bitstream.

The layout and semantics supporting this feature at the macroblock
level are described in Section 10.

9.4. Loop Filter Type and Levels

VP8 supports two types of loop filters having different computational
complexity. The following bits occur in the header to support the
selection of the baseline type, strength, and sharpness behavior of
the loop filter used for the current frame.

+ + +
| Index | Description |

4 4 +

| L(1) | filter_type |

| L(6) | loop_filter_level |

| L(3) | sharpness_level |

The meaning of these numbers will be further explained in Section 15.

VP8 has a feature in the bitstream that enables adjustment of the

loop filter level based on a macroblock’s prediction mode and

reference frame. The per-macroblock adjustment is done through delta
values against the default loop filter level for the current frame.

This subsection contains flag and value information for implementing
per-macroblock loop filter level adjustment to default decoder

behavior. The data in this section is used in the decoding of the
ensuing per-macroblock information and applies to the entire frame.
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L(2) is a one-bit flag indicating if the macroblock loop filter
adjustment is on for the current frame. 0 means that such a feature
is not supported in the current frame, and 1 means this feature is
enabled for the current frame.

Whether the adjustment is based on a reference frame or encoding
mode, the adjustment of the loop filter level is done via a delta

value against a baseline loop filter value. The delta values are

updated for the current frame if an L(1) bit,

mode_ref If delta_update, takes the value 1. There are two groups of
delta values: One group of delta values is for reference frame-based
adjustments, and the other group is for mode-based adjustments. The
number of delta values in the two groups is MAX_REF LF_DELTAS and
MAX_MODE_LF_DELTAS, respectively. For every value within the two
groups, there is a one-bit L(1) to indicate if the particular value

is updated. When one is updated (1), it is transmitted as a six-bit-
magnitude L(6) followed by a one-bit sign flag (L(1) -- O for

positive and 1 for negative).

9.5. Token Partition and Partition Data Offsets

VP8 allows DCT coefficients to be packed into multiple partitions,
besides the first partition with header and per-macroblock prediction
information, so the decoder can perform parallel decoding in an
efficient manner. A two-bit L(2) is used to indicate the number of
coefficient data partitions within a compressed frame. The two bits
are defined in the following table:

B — + + +
| Bit 1 | Bit O | Number of Partitions |
+ + + +
|0 |0 |1 |

I |

|0 |1 |2 |

I |

|11 |0 [4 |

I |

1T |11 |8 |

+ + + +

Offsets are embedded in the bitstream to provide the decoder direct
access to token patrtitions. If the number of data partitions is
greater than 1, the size of each partition (except the last) is

written in 3 bytes (24 bits). The size of the last partition is the
remainder of the data not used by any of the previous partitions.
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The partitioned data are consecutive in the bitstream, so the size
can also be used to calculate the offset of each partition. The
following pseudocode illustrates how the size/offset is defined by
the three bytes in the bitstream.

---- Begin code block

Offset/size = (uint32)(byte0) + ((uint32)(bytel)<<8)
+ ((uint32)(byte2)<<16);

---- End code block

9.6. Dequantization Indices

All residue signals are specified via a quantized 4x4 DCT applied to
the Y, U, V, or Y2 subblocks of a macroblock. As detailed in

Section 14, before inverting the transform, each decoded coefficient
is multiplied by one of six dequantization factors, the choice of

which depends on the plane (Y, chroma = U or V, Y2) and coefficient
position (DC = coefficient 0, AC = coefficients 1-15). The six

values are specified using 7-bit indices into six corresponding fixed
tables (the tables are given in Section 14).

The first 7-bit index gives the dequantization table index for
Y-plane AC coefficients, called yac_qi. Itis always coded and acts
as a baseline for the other 5 quantization indices, each of which is
represented by a delta from this baseline index. Pseudocode for
reading the indices follows:

---- Begin code block

yac gi =L(7); [*Y ac index always specified */
ydc_delta = F? delta(): 0; /*Y dc delta specified if
flag is true */

y2dc_delta = F? delta(): 0; /* Y2 dc delta specified if
flag is true */

y2ac_delta = F? delta(): 0; /* Y2 ac delta specified if
flag is true */

uvdc_delta = F? delta(): 0; /* chroma dc delta specified
if flag is true */

uvac_delta = F? delta(): 0; /* chroma ac delta specified
if flag is true */

---- End code block
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Where delta() is the process to read 5 bits from the bitstream to
determine a signed delta value:

+ + +
| Index | Description |

+ + +
| L(4) | Magnitude of delta |

| |
| L(2) | Sign of delta, O for positive and 1 for negative |

+ + +

9.7. Refresh Golden Frame and Altref Frame

For key frames, both the golden frame and the altref frame are

refreshed/ replaced by the current reconstructed frame, by default.
For non-key frames, VP8 uses two bits to indicate whether the two
frame buffers are refreshed, using the reconstructed current frame:

+ + +
| Index | Description |

+ + +

| L(1) | Whether golden frame is refreshed (0O for no, 1 for yes). |

| |
| L(2) | Whether altref frame is refreshed (0 for no, 1 for yes). |
+ + +

When the flag for the golden frame is 0, VP8 uses 2 more bits in the
bitstream to indicate whether the buffer (and which buffer) is copied
to the golden frame, or if no buffer is copied:

+ + +
| Index | Description |
+ + +
| L(2) | Buffer copy flag for golden frame buffer |
+ + +
Where:

o 0 means no buffer is copied to the golden frame
o 1 means last_frame is copied to the golden frame
0 2 means alt_ref frame is copied to the golden frame

Similarly, when the flag for altref is 0, VP8 uses 2 bits in the
bitstream to indicate which buffer is copied to alt_ref_frame.
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+ + +
| Index | Description |

+ + +

| L(2) | Buffer copy flag for altref frame buffer |
+ + +

Where:

o 0 means no buffer is copied to the altref frame

0 1 means last_frame is copied to the altref frame

0 2 means golden_frame is copied to the altref frame

Two bits are transmitted for ref_frame_sign_bias for golden_frame and
alt_ref_frame, respectively.

+ + +

| Index | Description |
+ + +

| L(2) | Sign bias flag for golden frame |

| L(1) | Sign bias flag for altref frame |
+ + +

These values are used to control the sign of the motion vectors when
a golden frame or an altref frame is used as the reference frame for
a macroblock.

9.8. Refresh Last Frame Buffer

VP8 uses one bit, L(1), to indicate if the last frame reference
buffer is refreshed using the constructed current frame. On a key
frame, this bit is overridden, and the last frame buffer is always
refreshed.

9.9. DCT Coefficient Probability Update

This field contains updates to the probability tables used to decode
DCT coefficients. For each of the probabilities in the tables, there
is an L(1) flag indicating if the probability is updated for the

current frame, and if the L(1) flag is set to 1, there follows an
additional 8-bit value representing the new probability value. These
tables are maintained across interframes but are of course replaced
with their defaults at the beginning of every key frame.

The layout and semantics of this field will be taken up in
Section 13.
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9.10. Remaining Frame Header Data (Non-Key Frame)

+ + +
| Index | Description |
B + +
| L(2) | mb_no_skip_coeff. This flag indicates at the frame level |
| if skipping of macroblocks with no non-zero coefficients |
| is enabled. Ifitis set to O, then prob_skip_false is |
| not read and mb_skip_coeff is forced to O for all |
| macroblocks (see Sections 11.1 and 12.1). |

I |

L(8) | prob_skip_false = probability used for decoding a |
| macroblock-level flag, which indicates if a macroblock |
| has any non-zero coefficients. Only read if |
| mb_no_skip_coeffis 1. |
I I

L(8) | prob_intra = probability that a macroblock is "intra” |
| predicted (that is, predicted from the already-encoded |
| portions of the current frame), as opposed to "inter" |
| predicted (that is, predicted from the contents of a |
| prior frame). |

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

|| I

| L(8) | prob_last = probability that an inter-predicted |

| | macroblock is predicted from the immediately previous |
| | frame, as opposed to the most recent golden frame or |
| | altref frame. |

| I

| L(8) | prob_gf = probability that an inter-predicted macroblock |
| | is predicted from the most recent golden frame, as |

| | opposed to the altref frame. |

| I

| F | If true, followed by four L(8)s updating the |

| | probabilities for the different types of intra-prediction |

| | for the Y plane. These probabilities correspond to the |

| | four interior nodes of the decoding tree for intra-Y |

| | modes in an interframe, that is, the even positions in |

| | the ymode_tree array given above. |

| I

| F | If true, followed by three L(8)s updating the |

| | probabilities for the different types of intra-prediction |

| | for the chroma planes. These probabilities correspond to |
| | the even positions in the uv_mode_tree array given above. |
|

| X | Motion vector probability update. Details are givenin |

| | Section 17.2, "Probability Updates". |

34 +
T T
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Decoding of this portion of the frame header is handled in the
reference decoder file dixie.c (Section 20.4).

9.11. Remaining Frame Header Data (Key Frame)

+ + +
| Index | Description |
+ + +
| L(2) | mb_no_skip_coeff. This flag indicates at the frame level |
| if skipping of macroblocks with no non-zero coefficients |
| is enabled. If it is set to O, then prob_skip_false is |
| not read and mb_skip_coeff is forced to O for all |
| macroblocks (see Sections 11.1 and 12.1). |

|

|

|

|

|| I

| L(8) | prob_skip_false = Probability used for decoding a |
| | macroblock-level flag, which indicates if a macroblock |
| | has any non-zero coefficients. Only read if |

| | mb_no_skip_coeffis 1. |

+ + +

Decoding of this portion of the frame header is handled in the
reference decoder file modemv.c (Section 20.11).

This completes the layout of the frame header. The remainder of the
first data partition consists of macroblock-level prediction data.

After the frame header is processed, all probabilities needed to
decode the prediction and residue data are known and will not change
until the next frame.

10. Segment-Based Feature Adjustments

Every macroblock may optionally override some of the default
behaviors of the decoder. Specifically, VP8 uses segment-based
adjustments to support changing quantizer level and loop filter level
for a macroblock. When the segment-based adjustment feature is
enabled for a frame, each macroblock within the frame is coded with a
segment_id. This effectively segments all the macroblocks in the
current frame into a number of different segments. Macroblocks
within the same segment behave exactly the same for quantizer and
loop filter level adjustments.

If both the segmentation_enabled and update_mb_segmentation_map flags
in subsection B of the frame header take a value of 1, the prediction

data for each (intra- or inter-coded) macroblock begins with a

specification of segment_id for the current macroblock. It is

decoded using this simple tree ...
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---- Begin code block
const tree_index mb_segment_tree [2 * (4-1)] =
2, 4, [*root: "0", "1" subtrees */
-0, -1, /*"00" = Oth value, "01" = 1st value */

-2,-3  [*"10" = 2nd value, "11" = 3rd value */
}

---- End code block

... combined with a 3-entry probability table,

mb_segment_tree_probs[3]. The macroblock’s segment_id is used later
in the decoding process to look into the segment_feature_data table

and determine how the quantizer and loop filter levels are adjusted.

The decoding of segment_id, together with the parsing of
intra-prediction modes (which is taken up next), is implemented in
the reference decoder file modemv.c.

11. Key Frame Macroblock Prediction Records
After specifying the features described above, the macroblock
prediction record next specifies the prediction mode used for the
macroblock.

11.1. mb_skip_coeff
The single bool flag is decoded using prob_skip_false if and only if
mb_no_skip_coeff is set to 1 (see Sections 9.10 and 9.11). If
mb_no_skip_coeff is set to 0, then this value defaults to 0.

11.2. Luma Modes
First comes the luma specification of type intra_mbmode, coded using

the kf_ymode_tree, as described in Section 8 and repeated here for
convenience:
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---- Begin code block
typedef enum

DC_PRED, /* predict DC using row above and column to the left */
V_PRED, /* predict rows using row above */

H_PRED, /* predict columns using column to the left */
TM_PRED, /* propagate second differences a la "True Motion" */

B_PRED, /* each Y subblock is independently predicted */

num_uv_modes = B_PRED, /* first four modes apply to chroma */
num_ymodes /* all modes apply to luma */

intra_mbmode;
const tree_index kf_ymode_tree [2 * (num_ymodes - 1)] =

{
-B_PRED, 2, /* root: B_PRED ="0", "1" subtree */
4,6, /*"1" subtree has 2 descendant subtrees */
-DC_PRED, -V_PRED, /*"10" subtree: DC_PRED = "100",
V_PRED ="101"*/
-H_PRED, -TM_PRED /*"11" subtree: H_PRED ="110",
TM_PRED ="111"*/
k

---- End code block

For key frames, the Y mode is decoded using a fixed probability array
as follows:

---- Begin code block

const Prob kf_ymode_prob [num_ymodes - 1] = { 145, 156, 163, 128},
Ymode = (intra_mbmode) treed_read(d, kf_ymode_tree, kf_ymode_prob);

---- End code block

d is of course the bool_decoder being used to read the first data
partition.

If the Ymode is B_PRED, it is followed by a (tree-coded) mode for

each of the 16 Y subblocks. The 10 subblock modes and their coding
tree are as follows:
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---- Begin code block
typedef enum
B_DC_PRED, /* predict DC using row above and column
to the left */
B_TM_PRED, /* propagate second differences a la
"True Motion" */

B_VE_PRED, /* predict rows using row above */
B_HE_PRED, /* predict columns using column to the left */

B_LD_PRED, /* southwest (left and down) 45 degree diagonal
prediction */
B_RD_PRED, /* southeast (right and down) " */
B_VR_PRED, /* SSE (vertical right) diagonal prediction */
B_VL_PRED, /* SSW (vertical left) " */
B_HD_ PRED, /* ESE (horizontal down) " */
B_HU_PRED, /* ENE (horizontal up) "™ */
num_intra_bmodes
intra_bmode;
/* Coding tree for the above, with implied codings as comments */

const tree_index bmode_tree [2 * (num_intra_bmodes - 1)] =

{
-B_DC_PRED, 2, /*B_DC_PRED ="0" */
-B_TM_PRED, 4, /*B_TM_PRED = "10" */
-B_VE_PRED, 6, /*B_VE_PRED ="110" */
8,12,
-B_HE_PRED, 10, /*B_HE_PRED = "11100" */

-B_RD_PRED, -B_VR_PRED, /*B_RD_PRED ="111010",
B_VR_PRED = "111011" */
-B_LD_PRED, 14, /*B_LD_PRED ="111110" */
-B_VL_PRED, 186, /*B_VL_PRED ="1111110" */
-B_HD_PRED, -B_HU_PRED /*HD ="11111110",
HU ="11111111" %/

h
---- End code block

The first four modes are smaller versions of the similarly named
16x16 modes above, albeit with slightly different numbering. The
last six "diagonal” modes are unique to luma subblocks.
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11.3. Subblock Mode Contexts

The coding of subblock modes in key frames uses the modes already
coded for the subblocks to the left of and above the subblock to
select a probability array for decoding the current subblock mode.
This is our first instance of contextual prediction, and there are
several caveats associated with it:

1. The adjacency relationships between subblocks are based on the
normal default raster placement of the subblocks.

2. The adjacent subblocks need not lie in the current macroblock.
The subblocks to the left of the left-edge subblocks 0, 4, 8, and
12 are the right-edge subblocks 3, 7, 11, and 15, respectively,
of the (already coded) macroblock immediately to the left.
Similarly, the subblocks above the top-edge subblocks 0, 1, 2,
and 3 are the bottom-edge subblocks 12, 13, 14, and 15 of the
already-coded macroblock immediately above us.

3. For macroblocks on the top row or left edge of the image, some of
the predictors will be non-existent. Such predictors are taken
to have had the value B_DC_PRED, which, perhaps conveniently,
takes the value 0 in the enumeration above. A simple management
scheme for these contexts might maintain a row of above
predictors and four left predictors. Before decoding the frame,
the entire row is initialized to B_DC_PRED; before decoding each
row of macroblocks, the four left predictors are also set to
B_DC_PRED. After decoding a macroblock, the bottom four subblock
modes are copied into the row predictor (at the current position,
which then advances to be above the next macroblock), and the
right four subblock modes are copied into the left predictor.

4. Many macroblocks will of course be coded using a 16x16 luma
prediction mode. For the purpose of predicting ensuing subblock
modes (only), such macroblocks derive a subblock mode, constant
throughout the macroblock, from the 16x16 luma mode as follows:
DC_PRED uses B_DC_PRED, V_PRED uses B_VE_PRED, H_PRED uses
B_HE_PRED, and TM_PRED uses B_TM_PRED.

5. Although we discuss interframe modes in Section 16, we remark
here that, while interframes do use all the intra-coding modes
described here and below, the subblock modes in an interframe are
coded using a single constant probability array that does not
depend on any context.

The dependence of subblock mode probability on the nearby subblock

mode context is most easily handled using a three-dimensional
constant array:
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---- Begin code block

const Prob kf_bmode_prob [num_intra_bmodes] [num_intra_bmodes]
[num_intra_bmodes-1];

---- End code block

The outer two dimensions of this array are indexed by the already-
coded subblock modes above and to the left of the current block,
respectively. The inner dimension is a typical tree probability list

whose indices correspond to the even indices of the bmode_tree above.
The mode for the j*(th) luma subblock is then

---- Begin code block

Bmode = (intra_bmode) treed_read(d, bmode_tree, kf_bmode_prob

[A] [L]);
---- End code block

Where the 4x4 Y subblock index j varies from 0 to 15 in raster order,
and A and L are the modes used above and to the left of the j(th)
subblock.

The contents of the kf_bmode_prob array are given at the end of this
section.

11.4. Chroma Modes

After the Y mode (and optional subblock mode) specification comes the
chroma mode. The chroma modes are a subset of the Y modes and are
coded using the uv_mode_tree, as described in Section 8 and repeated
here for convenience:

---- Begin code block
const tree_index uv_mode_tree [2 * (hum_uv_modes - 1)] =

-DC_PRED, 2, [* root: DC_PRED ="0", "1" subtree */
-V_PRED, 4, /*"1" subtree: V_PRED ="10",
"11" subtree */
-H_PRED, -TM_PRED /*"11" subtree: H_PRED ="110",
TM_PRED ="111"*/
3

---- End code block
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As for the Y modes (in a key frame), the chroma modes are coded using
a fixed, contextless probability table:

---- Begin code block

const Prob kf_uv_mode_prob [num_uv_modes - 1] ={ 142, 114, 183};
uv_mode = (intra_mbmode) treed_read(d, uv_mode_tree,
kf _uv_mode_prob);

---- End code block

This completes the description of macroblock prediction coding for
key frames. As will be discussed in Section 16, the coding of intra
modes within interframes is similar, but not identical, to that
described here (and in the reference code) for prediction modes and,
indeed, for all tree-coded data in VP8.

11.5. Subblock Mode Probability Table

Finally, here is the fixed probability table used to decode subblock
modes in key frames.

---- Begin code block

const Prob kf_bmode_prob [num_intra_bmodes] [num_intra_bmodes]
[num_intra_bmodes-1] =

{

{
{231, 120, 48, 89, 115, 113, 120, 152, 112},
{152, 179, 64, 126, 170, 118, 46, 70, 95},
{175, 69, 143, 80, 85, 82, 72, 155, 103},
{ 56, 58, 10, 171, 218, 189, 17, 13, 152},
{144, 71, 10, 38, 171, 213, 144, 34, 26},
{114, 26, 17,163, 44,195, 21, 10, 173},
{121, 24, 80,195, 26, 62, 44, 64, 85),
{170, 46, 55, 19, 136, 160, 33, 206, 71},
{ 63, 20, 8, 114,114,208, 12, 9,226},
{ 81, 40, 11, 96, 182, 84, 29, 16, 36}
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{134, 183, 89, 137, 98, 101, 106, 165, 148},
{ 72,187, 100, 130, 157, 111, 32, 75, 80},
{ 66,102, 167, 99, 74, 62, 40, 234, 128},
{ 41, 53, 9,178, 241, 141, 26, 8,107},
{104, 79, 12, 27, 217, 255, 87, 17, 7},
{ 74, 43, 26, 146, 73, 166, 49, 23, 157},
{ 65, 38,105,160, 51, 52, 31, 115, 128},
{ 87, 68, 71, 44, 114, 51, 15, 186, 23},
{ 47, 41, 14, 110, 182, 183, 21, 17, 194},
{ 66, 45, 25,102, 197, 189, 23, 18, 22}

{ 88, 88,147, 150, 42, 46, 45,196, 205},
{ 43, 97,183,117, 85, 38, 35,179, 61},
{ 39, 53,200, 87, 26, 21, 43, 232, 171},
{ 56, 34, 51,104, 114, 102, 29, 93, 77},
{107, 54, 32, 26, 51, 1, 81, 43, 31},

{ 39, 28, 85,171, 58, 165, 90, 98, 64],
{ 34, 22,116, 206, 23, 34, 43, 166, 73},
{ 68, 25,106, 22, 64,171, 36, 225, 114},
{ 34, 19, 21, 102, 132, 188, 16, 76, 124},
{ 62, 18, 78, 95, 85, 57, 50, 48, 51}

{193, 101, 35, 159, 215, 111, 89, 46, 111},
{ 60, 148, 31,172, 219, 228, 21, 18, 111},
{112, 113, 77, 85, 179, 255, 38, 120, 114},
{ 40, 42, 1,196, 245,209, 10, 25, 109},
{100, 80, 8, 43,154, 1, 51, 26, 71},

{ 88, 43, 29, 140, 166, 213, 37, 43, 154},
{ 61, 63, 30, 155, 67, 45, 68, 1,209},
{142, 78, 78, 16, 255, 128, 34, 197, 171},
{ 41, 40, 5,102,211,183, 4, 1,221},

{ 51, 50, 17, 168, 209, 192, 23, 25, 82}

{125, 98, 42, 88, 104, 85,117, 175, 82},
{ 95, 84, 53, 89, 128, 100, 113, 101, 45},
{ 75, 79,123, 47, 51,128, 81,171, 1},
{ 57, 17, 5, 71,102, 57, 53, 41, 49},

{115, 21, 2, 10, 102, 255, 166, 23, 6},
{ 38, 33, 13,121, 57, 73, 26, 1, 85},

{ 41, 10, 67,138, 77,110, 90, 47, 114},
{101, 29, 16, 10, 85,128, 101, 196, 26},
{ 57, 18, 10, 102, 102, 213, 34, 20, 43},
{117, 20, 15, 36, 163, 128, 68, 1, 26}

November 2011



RFC 6386

Bankoski, et al. Informational [Page 49]

VP8 Data Format and Decoding Guide

{138, 31, 36, 171, 27,166, 38, 44, 229},

67,
63,
40,
57,
47,
46,
65,
40,
87,

Lot Yt Ve Ve W e W W W e W

87, 58, 169, 82,115, 26, 59, 179},
59, 90, 180, 59, 166, 93, 73, 154},
40, 21, 116, 143, 209, 34, 39, 175},
46, 22, 24,128, 1, 54, 17, 37},
15, 16, 183, 34, 223, 49, 45, 183},
17, 33,183, 6, 98, 15, 32, 183},
32, 73,115, 28,128, 23, 128, 205},
3, 9,115, 51,192, 18, 6,223},
37, 9,115, 59, 77, 64, 21, 47}

{104, 55, 44,218, 9, 54, 53, 130, 226},

{ 64,
{ 54,
{ 30,
{ 75,
{ 39,
{ 31,
{ 88,
{ 56,
{ 55,

{102,
, 60, 71, 38, 73,119, 28,222, 37},

{ 69
{ 68,
{ 62
{ 75

{ 37,
{ 63,
{ 86,
{ 56,
{ 58,

90, 70, 205, 40, 41, 23, 26, 57},
57,112, 184, 5, 41, 38, 166, 213},
34, 26,133, 152, 116, 10, 32, 134},
32, 12, 51, 192, 255, 160, 43, 51},
19, 53,221, 26,114, 32, 73, 255},
9, 65,234, 2, 15, 1,118, 73},

31, 35, 67,102, 85, 55, 186, 85},
21, 23,111, 59, 205, 45, 37, 192},
38, 70,124, 73,102, 1, 34, 98}

61, 71, 37, 34, 53, 31, 243, 192},

45,128, 34, 1, 47, 11, 245, 171},

, 17, 19, 70, 146, 85, 55, 62, 70},
, 15, 9, 9, 64, 255, 184, 119, 16},

43, 37,154, 100, 163, 85, 160, 1},
9, 92,136, 28, 64, 32,201, 85},
6, 28, 5, 64, 255, 25, 248, 1},
8, 17,132, 137, 255, 55, 116, 128},
15, 20, 82,135, 57, 26,121, 40}

{164, 50, 31, 137, 154, 133, 25, 35, 218},

{ 51,
{ 86,
{ 22,
{ 83,
{ 45,
{ 56,
{ 85,
{ 18,
{ 35,

103, 44,131, 131, 123, 31, 6, 158},
40, 64, 135, 148, 224, 45, 183, 128},
26, 17,131, 240, 154, 14, 1, 209},
12, 13, 54,192, 255, 68, 47, 28},
16, 21, 91, 64,222, 7, 1,197},
21, 39, 155, 60, 138, 23, 102, 213},
26, 85, 85,128,128, 32, 146, 171},
11, 7, 63,144,171, 4, 4,246},
27, 10, 146, 174, 171, 12, 26, 128}
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{190, 80, 35, 99, 180, 80, 126, 54, 45},
{ 85,126, 47, 87,176, 51, 41, 20, 32},
{101, 75, 128, 139, 118, 146, 116, 128, 85},
{ 56, 41, 15,176, 236, 85, 37, 9, 62},
{146, 36, 19, 30, 171, 255, 97, 27, 20},
{ 71, 30, 17,119, 118, 255, 17, 18, 138},
{101, 38, 60, 138, 55, 70, 43, 26, 142},
{138, 45, 61, 62,219, 1, 81,188, 64},
{ 32, 41, 20, 117, 151, 142, 20, 21, 163},
{112, 19, 12, 61, 195, 128, 48, 4, 24}
}

h

---- End code block

12. Intraframe Prediction

Intraframe prediction uses already-coded macroblocks within the
current frame to approximate the contents of the current macroblock.
It applies to intra-coded macroblocks in an interframe and to all
macroblocks in a key frame.

Relative to the current macroblock "M", the already-coded macroblocks
include all macroblocks above M together with the macroblocks on the
same row as, and to the left of, M, though at most four of these
macroblocks are actually used: the block "A" directly above M, the
blocks immediately to the left and right of A, and the block

immediately to the left of M.

Each of the prediction modes (i.e., means of extrapolation from
already-calculated values) uses fairly simple arithmetic on pixel
values whose positions, relative to the current position, are defined
by the mode.

The chroma (U and V) and luma (Y) predictions are independent of each
other.

The relative addressing of pixels applied to macroblocks on the upper
row or left column of the frame will sometimes cause pixels outside
the visible frame to be referenced. Usually such out-of-bounds

pixels have an assumed value of 129 for pixels to the left of the
leftmost column of the visible frame and 127 for pixels above the top
row of the visible frame (including the special case of the pixel

above and to the left of the top-left pixel in the visible frame).
Exceptions to this (associated to certain modes) will be noted below.
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The already-coded macroblocks referenced by intra-prediction have
been "reconstructed”, that is, have been predicted and residue-
adjusted (as described in Section 14), but have not been loop-
filtered. While it does process the edges between individual
macroblocks and individual subblocks, loop filtering (described in
Section 15) is applied to the frame as a whole, after all of the
macroblocks have been reconstructed.

12.1. mb_skip_coeff

The single bool flag is decoded using prob_skip_false if and only if
mb_no_skip_coeff is set to 1 (see Sections 9.10 and 9.11). If
mb_no_skip_coeff is set to 0, then this value defaults to 0.

12.2. Chroma Prediction

The chroma prediction is a little simpler than the luma prediction,
so we treat it first. Each of the chroma modes treats U and V
identically; that is, the U and V prediction values are calculated in
parallel, using the same relative addressing and arithmetic in each
of the two planes.

The modes extrapolate prediction values using the 8-pixel row "A"
lying immediately above the block (that is, the bottom chroma row of
the macroblock immediately above the current macroblock) and the
8-pixel column "L" immediately to the left of the block (that is, the
rightmost chroma column of the macroblock immediately to the left of
the current macroblock).

Vertical prediction (chroma mode V_PRED) simply fills each 8-pixel
row of the 8x8 chroma block with a copy of the "above" row (A). If
the current macroblock lies on the top row of the frame, all 8 of the
pixel values in A are assigned the value 127.

Similarly, horizontal prediction (H_PRED) fills each 8-pixel column
of the 8x8 chroma block with a copy of the "left" column (L). If the
current macroblock is in the left column of the frame, all 8 pixel
values in L are assigned the value 129.

DC prediction (DC_PRED) fills the 8x8 chroma block with a single
value. In the generic case of a macroblock lying below the top row
and right of the leftmost column of the frame, this value is the
average of the 16 (genuinely visible) pixels in the (union of the)
above row A and left column L.

Otherwise, if the current macroblock lies on the top row of the

frame, the average of the 8 pixels in L is used; if it lies in the
left column of the frame, the average of the 8 pixels in A is used.

Bankoski, et al. Informational [Page 51]



RFC 6386 VP8 Data Format and Decoding Guide = November 2011

Note that the averages used in these exceptional cases are not the
same as those that would be arrived at by using the out-of-bounds A
and L values defined for V_PRED and H_PRED. In the case of the
leftmost macroblock on the top row of the frame, the 8x8 block is
simply filled with the constant value 128.

For DC_PRED, apart from the exceptional case of the top-left
macroblock, we are averaging either 16 or 8 pixel values to get a
single prediction value that fills the 8x8 block. The rounding is
done as follows:

---- Begin code block

int sum; /* sum of 8 or 16 pixels at (at least) 16-bit precision */
int shf; /* base 2 logarithm of the number of pixels (3 or 4) */

Pixel DCvalue = (sum + (1 << (shf-1))) >> shf;

---- End code block

Because the summands are all valid pixels, no "clamp" is necessary in
the calculation of DCvalue.

The remaining "True Motion" (TM_PRED) chroma mode gets its name from
an older technique of video compression used by On2 Technologies, to
which it bears some relation. In addition to the row "A" and column

"L", TM_PRED uses the pixel "P" above and to the left of the chroma
block.
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The following figure gives an example of how TM_PRED works:

---- Begin code block

| L7 | X70 | X71 | X72 | X73 | X74 | X75 | X76 | X77 |
s e S I B R B B

---- End code block

Where P, As, and Ls represent reconstructed pixel values from
previously coded blocks, and X00 through X77 represent predicted
values for the current block. TM_PRED uses the following equation to

calculate X_ij:

X ij=Li+Aj-P(ij=0,1,2,3)
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The exact algorithm is as follows:

---- Begin code block

void TMpred(
Pixel b[8][8], /* chroma (U or V) prediction block */
const Pixel A[8], /* row of already-constructed pixels
above block */
const Pixel L[8], /* column of " just to the left of

block */
const Pixel P /* pixel just to the left of A and
above L*/
)
intr=0; [* row */
do {
intc=0; /* column */
do {

b[r][c] = clamp255(L[r]+ Alc] - P);
} while (++c < 8);
} while (++r < 8);

}
---- End code block

Note that the process could equivalently be described as propagating
the vertical differences between pixels in L (starting from P), using
the pixels from A to start each column.

An implementation of chroma intra-prediction may be found in the
reference decoder file predict.c (Section 20.14).

Unlike DC_PRED, for macroblocks on the top row or left edge, TM_PRED
does use the out-of-bounds values of 127 and 129 (respectively)
defined for V_PRED and H_PRED.

12.3. Luma Prediction

The prediction processes for the first four 16x16 luma modes

(DC_PRED, V_PRED, H_PRED, and TM_PRED) are essentially identical to
the corresponding chroma prediction processes described above, the

only difference being that we are predicting a single 16x16 luma

block instead of two 8x8 chroma blocks.

Thus, the row "A" and column "L" here contain 16 pixels, the DC
prediction is calculated using 16 or 32 pixels (and shf is 4 or 5),

and we of course fill the entire prediction buffer, that is, 16 rows

(or columns) containing 16 pixels each. The reference implementation
of 16x16 luma prediction is also in predict.c.
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In the remaining luma mode (B_PRED), each 4x4 Y subblock is
independently predicted using one of ten modes (listed, along with
their encodings, in Section 11).

Also, unlike the full-macroblock modes already described, some of the
subblock modes use prediction pixels above and to the right of the
current subblock. In detail, each 4x4 subblock "B" is predicted

using (at most) the 4-pixel column "L" immediately to the left of B

and the 8-pixel row "A" immediately above B, consisting of the 4
pixels above B followed by the 4 adjacent pixels above and to the
right of B, together with the single pixel "P" immediately to the

left of A (and immediately above L).

For the purpose of subblock intra-prediction, the pixels immediately
to the left and right of a pixel in a subblock are the same as the

pixels immediately to the left and right of the corresponding pixel

in the frame buffer "F". Vertical offsets behave similarly: The

above row A lies immediately above B in F, and the adjacent pixels in
the left column L are separated by a single row in F.

Because entire macroblocks (as opposed to their constituent
subblocks) are reconstructed in raster-scan order, for subblocks
lying along the right edge (and not along the top row) of the current
macroblock, the four "extra" prediction pixels in A above and to the
right of B have not yet actually been constructed.

Subblocks 7, 11, and 15 are affected. All three of these subblocks
use the same extra pixels as does subblock 3 (at the upper right
corner of the macroblock), namely the 4 pixels immediately above and
to the right of subblock 3. Writing (R,C) for a frame buffer

position offset from the upper left corner of the current macroblock
by R rows and C columns, the extra pixels for all the right-edge
subblocks (3, 7, 11, and 15) are at positions (-1,16), (-1,17),

(-1,18), and (-1,19). For the rightmost macroblock in each
macroblock row except the top row, the extra pixels shall use the
same value as the pixel at position (-1,15), which is the rightmost
visible pixel on the line immediately above the macroblock row. For
the top macroblock row, all the extra pixels assume a value of 127.

The details of the prediction modes are most easily described in
code.
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---- Begin code block

/* Result pixels are often averages of two or three predictor
pixels. The following subroutines are used to calculate
these averages. Because the arguments are valid pixels, no
clamping is necessary. An actual implementation would
probably use inline functions or macros. */

/* Compute weighted average centered at y w/adjacent x, z */

Pixel avg3(Pixel x, Pixel y, Pixel z) {
return (X +y +y +z + 2) >> 2;}

/* Weighted average of 3 adjacent pixels centered at p */
Pixel avg3p(const Pixel *p) { return avg3(p[-1], p[O], p[1]);}
/* Simple average of x and y */

Pixel avg2(Pixel x, Pixel y) { return (x +y + 1) >> 1;}

/* Average of p[0] and p[1] may be considered to be a synthetic
pixel lying between the two, that is, one half-step past p. */

Pixel avg2p(const Pixel *p) { return avg2(p[0], p[1]);}

void subblock_intra_predict(
Pixel B[4][4], /* Y subblock prediction buffer */
const Pixel *A, /* A[0]...A[7] = above row, A[-1] = P */
const Pixel *L, /* L[O]...L[3] = left column, L[-1] =P */
intra_bmode mode /* enum is in Section 11.2 */

) {

Pixel E[9]; [* 9 already-constructed edge pixels */
E[0] = L[3]; E[1] =L[2]; E[2]=L[1]; E[3]=L[O];
E[4] = A[-1l]; /F==L[-1]==P*

E[5] = A[0]; E[6] = A[1]; E[7]=A[2]; E[8] =A[3];

switch(mode) {
[* First four modes are similar to corresponding
full-block modes. */

case B_DC_PRED:
{

intv=4; /*DC sum/avg, 4 is rounding adjustment */
inti=0; do{v+=A[i]+ L[i];} while (++i<4);

v >>=3; /* averaging 8 pixels */
i=0; do{ /*fill prediction buffer with constant DC
value */
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intj=0; do {B[i][j] =v;} while (++j < 4);
} while (++i < 4);
break;

}
case B_TM_PRED: /* just like 16x16 TM_PRED */

intr=0; do{
intc =0; do{
B[r][c] = clamp255(L[r] + A[c] - A[-1]);
} while (++c < 4);
} while (++r < 4);
break;

}
case B_VE_PRED: /* like 16x16 V_PRED except using averages */

intc =0; do{/*all 4 rows = smoothed top row */
B[O][c] = B[1][c] = B[2][c] = B[3][c] = avg3p(A + c);

} while (++c < 4);

break;

}
case B_HE_PRED: /* like 16x16 H_PRED except using averages */

[* Bottom row is exceptional because L[4] does not exist */
int v = avg3(L[2], L[3], L[3]);
intr=3; while (1) { /* all 4 columns = smoothed left

column */
B[r][0] = B[r][1] = B[r][2] = B[r][3] = v;
if (--r < 0)
break;
v =avg3p(L +r); /* upper 3 rows use average of
3 pixels */
}
break;

}

[* The remaining six "diagonal" modes subdivide the
prediction buffer into diagonal lines. All the pixels
on each line are assigned the same value; this value is
(a smoothed or synthetic version of) an
already-constructed predictor value lying on the same
line. For clarity, in the comments, we express the
positions of these predictor pixels relative to the
upper left corner of the destination array B.
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These modes are unique to subblock prediction and have
no full-block analogs. The first two use lines at
+|- 45 degrees from horizontal (or, equivalently,
vertical), that is, lines whose slopes are +|- 1. */

case B_ LD PRED: [/* southwest (left and down) step =
(-1, D) or (1,-1) */

[* avg3p(A + j) is the "smoothed" pixel at (-1,j) */
B[0][0] = avg3p(A + 1);
B[O][1] = B[1][0] = avg3p(A + 2);
B[0][2] = B[1][1] = B[2][0] = avg3p(A + 3);
B[0][3] = B[1][2] = B[2][1] = B[3][0] = avg3p(A + 4);
B[1][3] = B[2][2] = B[3][1] = avg3p(A + 5);
B[2][3] = B[3][2] = avg3p(A + 6);
B[3][3] = avg3(A[6], A[7], A[7]); /* A[8] does not exist */
break;

case B_RD_PRED: /* southeast (right and down) step =
(1,2) or (-1,-1) */
B[3][0] = avg3p(E + 1); /* predictor is from (2, -1) */
B[3][1] = B[2][0] = avg3p(E + 2); /* (1, -1)*/
B[3][2] = B[2][1] = B[1][0] = avg3p(E + 3); /* (0, -1) */
B[3][3] = B[2][2] = B[1][1] = B[0][0] =
avg3p(E + 4); *(-1,-1)*/
B[2][3] = B[1][2] = B[0][1] = avg3p(E + 5); /* (-1, 0) */
B[1][3] = B[O][2] = avg3p(E + 6); /* (-1, 1) */
B[O][3] = avg3p(E + 7); /* (-1, 2) */
break;

/* The remaining 4 diagonal modes use lines whose slopes are
+|- 2 and +|- 1/2. The angles of these lines are roughly
+|- 27 degrees from horizontal or vertical.

Unlike the 45 degree diagonals, here we often need to
"synthesize" predictor pixels midway between two actual
predictors using avg2p(p), which we think of as returning
the pixel "at" p[1/2]. */

case B_VR_PRED: /* SSE (vertical right) step =
(2,2) or (-2,-1) */

B[3][0] = avg3p(E + 2); /* predictor is from (1, -1) */
B[2][0] = avg3p(E + 3); /* (0, -1) */

B[3][1] = B[1][0] = avg3p(E + 4); /* (-1, -1)*/
B[2][1] = B[O][0] = avg2p(E + 4); /* (-1, -1/2) */
B[3][2] = B[1][1] = avg3p(E + 5); /* (-1, 0)*
B[2][2] = B[O][1] = avg2p(E + 5); /* (-1, 1/2)*/
B[3][3] = B[1][2] = avg3p(E + 6); /* (-1, 1)*
B[2][3] = B[0][2] = avg2p(E + 6); /* (-1, 3/2)*/
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B[1][3] = avg3p(E + 7); /* (-1, 2) */
B[O][3] = avg2p(E + 7); /* (-1, 5/2) */
break;

case B_VL_PRED: /* SSW (vertical left) step =
(2,-1) or (-2,1) */
B[0][0] = avg2p(A); /* predictor is from (-1, 1/2) */
B[1][0] = avg3p(A + 1); /* (-1, 1) */
B[2][0] = B[O][1] = avg2p(A + 1); /* (-1, 3/2) */
B[1][1] = B[3][0] = avg3p(A + 2); /* (-1, 2)*
B[2][1] = B[0][2] = avg2p(A + 2); /* (-1, 5/2) */
B[3][1] = B[1][2] = avg3p(A + 3); /* (-1, 3)*/
B[2][2] = B[O][3] = avg2p(A + 3); /* (-1, 7/2) */
B[3][2] = B[1][3] = avg3p(A + 4); /* (-1, 4)*
/* Last two values do not strictly follow the pattern. */
B[2][3] = avg3p(A + 5); /* (-1, 5) [avg2p(A + 4) =
(-1,9/2)1 */
B[3][3] = avg3p(A + 6); /* (-1, 6) [avg3p(A +5) =
(-15)]*

break;

case B_HD PRED: /[* ESE (horizontal down) step =
(1,2) or (-1,-2) */

B[3][0] = avg2p(E); /* predictor is from (5/2, -1) */
B[3][1] = avg3p(E + 1); /* (2, -1) */
B[2][0] = B[3][2] = svg2p(E + 1); /*(3/2,-1)*/
B[2][1] = B[3][3] = avg3p(E + 2); /*( 1,-1)*
B[2][2] = B[1][0] = avg2p(E + 2); /* (1/2,-1) */
B[2][3] = B[1][1] = avg3p(E + 3); /*( 0,-1)*
B[1][2] = B[O][0] = avg2p(E + 3); /* (-1/2, -1) */
B[1][3] = B[O][1] = avg3p(E + 4); /*( -1,-1)*/
B[O][2] = avg3p(E + 5); /* (-1, 0) */
B[0][3] = avg3p(E + 6); /* (-1, 1) */
break;

case B_ HU PRED: /* ENE (horizontal up) step = (1,-2)
or (-1,2) */
B[0][0] = avg2p(L); /* predictor is from (1/2, -1) */
B[O][1] = avg3p(L + 1); /* (1, -1) */
B[0][2] = B[1][0] = avg2p(L + 1); /*(3/2, -1) */
B[0][3] = B[1][1] = avg3p(L + 2); /*( 2,-1)*/
B[1][2] = B[2][0] = avg2p(L + 2); /* (5/2, -1) */
B[1](3] = B[2][1] = avg3(L[2], L[3], L[3]); /*(3,-1)*/
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/* Not possible to follow pattern for much of the bottom
row because no (nearby) already-constructed pixels lie
on the diagonals in question. */

B[2]L[[23]]= B[2][3] = B[3][0] = B[3][1] = B[3][2] = B[3][3]

}
}
---- End code block

The reference decoder implementation of subblock intra-prediction may
be found in predict.c (Section 20.14).

13. DCT Coefficient Decoding

The second data partition consists of an encoding of the quantized

DCT (and WHT) coefficients of the residue signal. As discussed in

the format overview (Section 2), for each macroblock, the residue is
added to the (intra- or inter-generated) prediction buffer to produce

the final (except for loop filtering) reconstructed macroblock.

VP8 works exclusively with 4x4 DCTs and WHTSs, applied to the 24 (or
25 with the Y2 subblock) 4x4 subblocks of a macroblock. The ordering
of macroblocks within any of the "residue" partitions in general

follows the same raster scan as used in the first "prediction"

partition.

For all intra- and inter-prediction modes apart from B_PRED (intra:

whose Y subblocks are independently predicted) and SPLITMV (inter),
each macroblock’s residue record begins with the Y2 component of the
residue, coded using a WHT. B_PRED and SPLITMV coded macroblocks
omit this WHT and specify the Oth DCT coefficient in each of the 16 Y
subblocks.

After the optional Y2 block, the residue record continues with 16
DCTs for the Y subblocks, followed by 4 DCTs for the U subblocks,
ending with 4 DCTs for the V subblocks. The subblocks occur in the
usual order.

The DCTs and WHT are tree-coded using a 12-element alphabet whose
members we call "tokens". Except for the end-of-block token (which
sets the remaining subblock coefficients to zero and is followed by

the next block), each token (sometimes augmented with data
immediately following the token) specifies the value of the single
coefficient at the current (implicit) position and is followed by a

token applying to the next (implicit) position.
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For all the Y and chroma subblocks, the ordering of the coefficients
follows a so-called zig-zag order. DCTs begin at coefficient 1 if Y2
is present, and begin at coefficient 0 if Y2 is absent. The WHT for

a Y2 subblock always begins at coefficient 0.

13.1. Macroblock without Non-Zero Coefficient Values

If the flag within macroblock (MB) MODE_INFO indicates that a
macroblock does not have any non-zero coefficients, the decoding
process of DCT coefficients is skipped for the macroblock.

13.2. Coding of Individual Coefficient Values

The coding of coefficient tokens is the same for the DCT and WHT, and
for the remainder of this section "DCT" should be taken to mean
either DCT or WHT.

All tokens (except end-of-block) specify either a single unsigned
value or a range of unsigned values (immediately) followed by a
simple probabilistic encoding of the offset of the value from the
base of that range.

Non-zero values (of either type) are then followed by a flag
indicating the sign of the coded value (negative if 1, positive
if 0).

Below are the tokens and decoding tree.

---- Begin code block

typedef enum

{
DCT_0, /[*value 0*
DCT_1, [/*1%
DCT_ 2, [*2*%
DCT_3, [*3*%
DCT_4, [*4%
dct_catl, /*range5-6 (size 2)*
dct_cat2, /*7-10 (4)*
dct_cat3, /*11-18 (8)*
dct_cat4, /*19-34 (16)*/
dct_cat5, /*35-66 (32)*
dct_cat6, /* 67 - 2048 (1982) */
dct_eob, /* end of block */

num_dct_tokens /*12*/

dct_token;
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const tree_index coeff_tree [2 * (hum_dct_tokens - 1)] =

{
-dct_eob, 2, [*eob ="0" */
-DCT_0, 4, 0 ="10" %/
-DCT_1, 6, 1 ="110"*
8,12,
-DCT_2, 10, /2 ="11100"*/
-DCT_3, -DCT_4, /3 ="111010", 4 ="111011"*/
14, 16,

-dct_catl, -dct_cat2, /* catl = "111100",
cat2 ="111101" */

18, 20,

-dct_cat3, -dct_cat4, /* cat3 ="1111100",
cat4 ="1111101"*/

-dct_cat5, -dct_cat6 /* cat4 ="1111110",
cat4 ="1111111" %/

2

---- End code block

In general, all DCT coefficients are decoded using the same tree.
However, if the preceding coefficient is a DCT_0, decoding will skip
the first branch, since it is not possible for dct_eob to follow a
DCT_O.

The tokens dct_catl ... dct_cat6 specify ranges of unsigned values,
the value within the range being formed by adding an unsigned offset
(whose width is 1, 2, 3, 4, 5, or 11 bits, respectively) to the base

of the range, using the following algorithm and fixed probability
tables.
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---- Begin code block

uint DCTextra(bool_decoder *d, const Prob *p)
{
uintv =0;
do {v +=v +read_bool(d, *p);} while (*++p);
return v;

}

const Prob Pcatl[] = { 159, 0};
const Prob Pcat2[] = { 165, 145, 0};
const Prob Pcat3[] = { 173, 148, 140, 0};
const Prob Pcat4[] ={ 176, 155, 140, 135, 0};
const Prob Pcat5[] = { 180, 157, 141, 134, 130, 0};
const Prob Pcat6[] =
{254, 254, 243, 230, 196, 177, 153, 140, 133, 130, 129, 0};

---- End code block

If v -- the unsigned value decoded using the coefficient tree,
possibly augmented by the process above -- is non-zero, its sign is
set by simply reading a flag:

---- Begin code block

if (read_bool(d, 128))
V=-v;

---- End code block

13.3. Token Probabilities

The probability specification for the token tree (unlike that for the
"extra bits" described above) is rather involved. It uses three
pieces of context to index a large probability table, the contents of
which may be incrementally modified in the frame header. The full
(non-constant) probability table is laid out as follows.

---- Begin code block
Prob coeff_probs [4] [8] [3] [num_dct_tokens-1];

---- End code block
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Working from the outside in, the outermost dimension is indexed by
the type of plane being decoded:
o 0-Y beginning at coefficient 1 (i.e., Y after Y2)
o1l-Y2
o2-UorV
0 3-Y beginning at coefficient O (i.e., Y in the absence of Y2).
The next dimension is selected by the position of the coefficient
being decoded. That position, ¢, steps by ones up to 15, starting
from zero for block types 1, 2, or 3 and starting from one for block

type 0. The second array index is then

---- Begin code block

coeff_bands [c]

---- End code block

Where:

---- Begin code block

const int coeff_bands [16] = {
O; 11 Zy 3! 61 41 5! 6! 67 6' 6’ 6’ 6' 6’ 6’ 7
h

---- End code block

is a fixed mapping of position to "band".

The third dimension is the trickiest. Roughly speaking, it measures
the "local complexity" or extent to which nearby coefficients are
non-zero.

For the first coefficient (DC, unless the block type is 0), we

consider the (already encoded) blocks within the same plane (Y2, Y,

U, or V) above and to the left of the current block. The context

index is then the number (0, 1, or 2) of these blocks that had at

least one non-zero coefficient in their residue record. Specifically

for Y2, because macroblocks above and to the left may or may not have
a Y2 block, the block above is determined by the most recent
macroblock in the same column that has a Y2 block, and the block to
the left is determined by the most recent macroblock in the same row
that has a Y2 block.
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Beyond the first coefficient, the context index is determined by the
absolute value of the most recently decoded coefficient (necessarily
within the current block) and is 0 if the last coefficient was a

zero, 1 if it was plus or minus one, and 2 if its absolute value
exceeded one.

Note that the intuitive meaning of this measure changes as
coefficients are decoded. For example, prior to the first token, a

zero means that the neighbors are empty, suggesting that the current
block may also be empty. After the first token, because an end-of-
block token must have at least one non-zero value before it, a zero
means that we just decoded a zero and hence guarantees that a
non-zero coefficient will appear later in this block. However, this

shift in meaning is perfectly okay because the complete context
depends also on the coefficient band (and since band 0 is occupied
exclusively by position 0).

As with other contexts used by VP8, the "neighboring block™ context
described here needs a special definition for subblocks lying along
the top row or left edge of the frame. These "non-existent"
predictors above and to the left of the image are simply taken to be
empty -- that is, taken to contain no non-zero coefficients.

The residue decoding of each macroblock then requires, in each of two
directions (above and to the left), an aggregate coefficient

predictor consisting of a single Y2 predictor, two predictors for

each of U and V, and four predictors for Y. In accordance with the
scan-ordering of macroblocks, a decoder needs to maintain a single
"left" aggregate predictor and a row of "above" aggregate predictors.

Before decoding any residue, these maintained predictors may simply
be cleared, in compliance with the definition of "non-existent"
prediction. After each block is decoded, the two predictors
referenced by the block are replaced with the (empty or non-empty)
state of the block, in preparation for the later decoding of the

blocks below and to the right of the block just decoded.

The fourth, and final, dimension of the token probability array is of
course indexed by (half) the position in the token tree structure, as
are all tree probability arrays.

The pseudocode below illustrates the decoding process. Note that

criteria, functions, etc. delimited with ** are either dependent on
decoder architecture or are elaborated on elsewhere in this document.
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---- Begin code block

int block[16] = { 0 }; /* current 4x4 block coeffs */

int firstCoeff = 0;

int plane;

int ctx2;

int ctx3 = 0; /* the 3rd context referred to in above description */

Prob *probTable;

int token;

int sign;

int absValue;

int extraBits;

bool prevCoeffWasZero = false;

bool currentBlockHasCoeffs = false;

/* base coeff abs values per each category, elem #0 is
DCT_VAL_CATEGORY1, * #1 is DCT_VAL_CATEGORY?2, etc. */

int categoryBase[6] = {5, 7, 11, 19, 35, 67 };

/* Determine plane to use */

if (**current_block_is_Y2_block**) plane = 0;
else if ( **current_block_is_chroma**) plane = 2;
else if ( **current_macroblock_has_Y2**) plane = 1;
else plane = 3;

/* For luma blocks of a "Y2 macroblock" we skip coeff index #0 */
if (plane ==1)
firstCoeff++;

/* Determine whether neighbor 4x4 blocks have coefficients.
This is dependent on the plane we are currently decoding;
i.e., we check only coefficients from the same plane as the
current block. */

if ( **left_neighbor_block_has_coefficients(plane)** )

Ctx3++;

if (**above_neighbor_block _has_coefficients(plane)** )

Cix3++;

for(i = firstCoeff; i < 16; ++i )

ctx2 = coeff_bandsli;
probTable = coeff_probs[plane][ctx2][ctx3];

I* skip first code (dct_eob) if previous token was DCT_0 */
if ( prevCoeffWasZero )
token = treed_read ( d, **coeff_tree_without_eob**,
probTable );
else
token = treed_read ( d, coeff_tree, probTable );
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if (token == dct_eob)
break;
if (token !I=DCT_0)

currentBlockHasCoeffs = true;
if (**token_has_extra_bits(token)** )

extraBits = DCTextra( token );

absValue =
categoryBase[**token_to_cat_index(token)**] +
extraBits;
}
else
absValue = **token_to_abs_value(token)**;
}

sign = read_bool(d, 128);
block[i] = sign ? -absValue : absValue;

}

else

absValue = 0;

}

[* Set contexts and stuff for next coeff */
if (absValue ==0) ctx3 =0;

else if (absValue ==1) ctx3=1;

else ctx3 =2;
prevCoeffWasZero = true;

}

/* Store current block status to decoder internals */
**pblock_has_coefficients[currentMb][currentBlock]** =
currentBlockHasCoeffs;

---- End code block

While we have in fact completely described the coefficient decoding
procedure, the reader will probably find it helpful to consult the
reference implementation, which can be found in the file tokens.c
(Section 20.16).
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13.4. Token Probability Updates

As mentioned above, the token-decoding probabilities may change from
frame to frame. After detection of a key frame, they are of course

set to their defaults as shown in Section 13.5; this must occur

before decoding the remainder of the header, as both key frames and
interframes may adjust these probabilities.

The layout and semantics of the coefficient probability update record
(Section | of the frame header) are straightforward. For each
position in the coeff_probs array there occurs a fixed-probability
bool indicating whether or not the corresponding probability should
be updated. If the bool is true, there follows a P(8) replacing that
probability. Note that updates are cumulative; that is, a

probability updated on one frame is in effect for all ensuing frames
until the next key frame, or until the probability is explicitly

updated by another frame.

The algorithm to effect the foregoing is simple:

---- Begin code block

inti=0; do {
intj=0; do{
intk=0; do{
intt=0; do{

if (read_bool(d, coeff_update_probs [i] [j] [K] [t]))
coeff_probs [i] [j] [K] [t] = read_literal(d, 8);

} while (++t < num_dct_tokens - 1);
} while (++k < 3);

} while (++j < 8);

} while (++i < 4);

---- End code block
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The (constant) update probabilities are as follows:

---- Begin code block

const Prob coeff_update_probs [4] [8] [3] [num_dct_tokens-1] =

{
{

{
{255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255},
{255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255},
{255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255}
}l
{

{176, 246, 255, 255, 255, 255, 255, 255, 255, 255, 255},
{223, 241, 252, 255, 255, 255, 255, 255, 255, 255, 255},
{249, 253, 253, 255, 255, 255, 255, 255, 255, 255, 255}
};

{255, 244, 252, 255, 255, 255, 255, 255, 255, 255, 255},
{234, 254, 254, 255, 255, 255, 255, 255, 255, 255, 255},
{253, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255}
};
{

{255, 246, 254, 255, 255, 255, 255, 255, 255, 255, 255},
{239, 253, 254, 255, 255, 255, 255, 255, 255, 255, 255},
{254, 255, 254, 255, 255, 255, 255, 255, 255, 255, 255}
}1

{255, 248, 254, 255, 255, 255, 255, 255, 255, 255, 255},
{251, 255, 254, 255, 255, 255, 255, 255, 255, 255, 255},
{255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255}
}1
{

{255, 253, 254, 255, 255, 255, 255, 255, 255, 255, 255},
{251, 254, 254, 255, 255, 255, 255, 255, 255, 255, 255},
{254, 255, 254, 255, 255, 255, 255, 255, 255, 255, 255}
I
{

{255, 254, 253, 255, 254, 255, 255, 255, 255, 255, 255},
{250, 255, 254, 255, 254, 255, 255, 255, 255, 255, 255},
{254, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255}
}l

{255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255},
{255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255},
{255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255}
}
}1
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{

{
{217, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255},
{225, 252, 241, 253, 255, 255, 254, 255, 255, 255, 255},
{234, 250, 241, 250, 253, 255, 253, 254, 255, 255, 255}
}l

{255, 254, 255, 255, 255, 255, 255, 255, 255, 255, 255},
{223, 254, 254, 255, 255, 255, 255, 255, 255, 255, 255},
{238, 253, 254, 254, 255, 255, 255, 255, 255, 255, 255}
};
{

{255, 248, 254, 255, 255, 255, 255, 255, 255, 255, 255},
{249, 254, 255, 255, 255, 255, 255, 255, 255, 255, 255},
{255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255}
};

{255, 253, 255, 255, 255, 255, 255, 255, 255, 255, 255},
{247, 254, 255, 255, 255, 255, 255, 255, 255, 255, 255},
{255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255}
}1
{

{255, 258, 254, 255, 255, 255, 255, 255, 255, 255, 255},
{252, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255},
{255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255}
}1
{

{255, 254, 254, 255, 255, 255, 255, 255, 255, 255, 255},
{253, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255},
{255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255}
}1

{255, 254, 253, 255, 255, 255, 255, 255, 255, 255, 255},
{250, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255},
{254, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255}
}l
{

{255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255},
{255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255},
{255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255}
}
}1
{

{
{186, 251, 250, 255, 255, 255, 255, 255, 255, 255, 255},
{234, 251, 244, 254, 255, 255, 255, 255, 255, 255, 255},
{251, 251, 243, 253, 254, 255, 254, 255, 255, 255, 255}
}l
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{
{255, 253, 254, 255, 255, 255, 255, 255, 255, 255, 255},
{236, 253, 254, 255, 255, 255, 255, 255, 255, 255, 255},
{251, 2583, 253, 254, 254, 255, 255, 255, 255, 255, 255}
};
{

{255, 254, 254, 255, 255, 255, 255, 255, 255, 255, 255},
{254, 254, 254, 255, 255, 255, 255, 255, 255, 255, 255},
{255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255}
};
{

{255, 254, 255, 255, 255, 255, 255, 255, 255, 255, 255},
{254, 254, 255, 255, 255, 255, 255, 255, 255, 255, 255},
{254, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255}
}1
{

{255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255},
{254, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255},
{255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255}
}1

{255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255},
{255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255},
{255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255}
I
{

{255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255},
{255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255},
{255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255}
}l
{

{255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255},
{255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255},
{255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255}

}
3
{

{
{248, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255},
{250, 254, 252, 254, 255, 255, 255, 255, 255, 255, 255},
{248, 254, 249, 253, 255, 255, 255, 255, 255, 255, 255}
}l

{255, 253, 253, 255, 255, 255, 255, 255, 255, 255, 255},
{246, 253, 253, 255, 255, 255, 255, 255, 255, 255, 255},
{252, 254, 251, 254, 254, 255, 255, 255, 255, 255, 255}
};
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{
{255, 254, 252, 255, 255, 255, 255, 255, 255, 255, 255},
{248, 254, 253, 255, 255, 255, 255, 255, 255, 255, 255},
{253, 255, 254, 254, 255, 255, 255, 255, 255, 255, 255}
};
{

{255, 251, 254, 255, 255, 255, 255, 255, 255, 255, 255},
{245, 251, 254, 255, 255, 255, 255, 255, 255, 255, 255},
{253, 253, 254, 255, 255, 255, 255, 255, 255, 255, 255}
};
{

{255, 251, 253, 255, 255, 255, 255, 255, 255, 255, 255},
{252, 253, 254, 255, 255, 255, 255, 255, 255, 255, 255},
{255, 254, 255, 255, 255, 255, 255, 255, 255, 255, 255}
}1
{

{255, 252, 255, 255, 255, 255, 255, 255, 255, 255, 255},
{249, 255, 254, 255, 255, 255, 255, 255, 255, 255, 255},
{255, 255, 254, 255, 255, 255, 255, 255, 255, 255, 255}
}1

{255, 255, 253, 255, 255, 255, 255, 255, 255, 255, 255},
{250, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255},
{255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255}
I
{

{ 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255},
{ 254, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255},
{ 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255}
}

}

h

---- End code block
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13.5. Default Token Probability Table

The default token probabilities are as follows.

---- Begin code block

const Prob default_coeff_probs [4] [8] [3] [num_dct_tokens - 1] =

{
{

{
{128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128},
{128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128},
{128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128}
}1
{

{253, 136, 254, 255, 228, 219, 128, 128, 128, 128, 128},
{189, 129, 242, 255, 227, 213, 255, 219, 128, 128, 128},
{106, 126, 227, 252, 214, 209, 255, 255, 128, 128, 128}
I
{

{ 1, 98, 248, 255, 236, 226, 255, 255, 128, 128, 128},
{181, 133, 238, 254, 221, 234, 255, 154, 128, 128, 128},
{ 78, 134, 202, 247, 198, 180, 255, 219, 128, 128, 128}
}l

{ 1,185, 249, 255, 243, 255, 128, 128, 128, 128, 128},
{184, 150, 247, 255, 236, 224, 128, 128, 128, 128, 128},
{ 77, 110, 216, 255, 236, 230, 128, 128, 128, 128, 128}
}

{

{ 1,101, 251, 255, 241, 255, 128, 128, 128, 128, 128},
{170, 139, 241, 252, 236, 209, 255, 255, 128, 128, 128},
{ 37,116, 196, 243, 228, 255, 255, 255, 128, 128, 128}
};

{ 1,204, 254, 255, 245, 255, 128, 128, 128, 128, 128},
{207, 160, 250, 255, 238, 128, 128, 128, 128, 128, 128},
{102, 103, 231, 255, 211, 171, 128, 128, 128, 128, 128}
}1

{

{ 1,152, 252, 255, 240, 255, 128, 128, 128, 128, 128},
{177, 135, 243, 255, 234, 225, 128, 128, 128, 128, 128},
{ 80, 129, 211, 255, 194, 224, 128, 128, 128, 128, 128}
}1
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{
{ 1, 1,255,128, 128, 128, 128, 128, 128, 128, 128},
{246, 1,255,128, 128, 128, 128, 128, 128, 128, 128},
{255, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128}
}

2

{

{
{198, 35, 237, 223, 193, 187, 162, 160, 145, 155, 62},
{131, 45,198, 221, 172, 176, 220, 157, 252, 221, 1},
{ 68, 47,146, 208, 149, 167, 221, 162, 255, 223, 128}
}l
{

{ 1, 149, 241, 255, 221, 224, 255, 255, 128, 128, 128},
{184, 141, 234, 253, 222, 220, 255, 199, 128, 128, 128},
{ 81, 99,181, 242, 176, 190, 249, 202, 255, 255, 128}
};

{ 1,129, 232, 253, 214, 197, 242, 196, 255, 255, 128},
{ 99, 121, 210, 250, 201, 198, 255, 202, 128, 128, 128},
{ 23, 91, 1683, 242, 170, 187, 247, 210, 255, 255, 128}

};

{

{ 1,200, 246, 255, 234, 255, 128, 128, 128, 128, 128},

{109, 178, 241, 255, 231, 245, 255, 255, 128, 128, 128},
{ 44, 130, 201, 253, 205, 192, 255, 255, 128, 128, 128}

}1

{ 1,132, 239, 251, 219, 209, 255, 165, 128, 128, 128},
{ 94, 136, 225, 251, 218, 190, 255, 255, 128, 128, 128},
{ 22,100, 174, 245, 186, 161, 255, 199, 128, 128, 128}
}1
{

{ 1,182, 249, 255, 232, 235, 128, 128, 128, 128, 128},
{124, 143, 241, 255, 227, 234, 128, 128, 128, 128, 128},
{ 35, 77,181, 251, 193, 211, 255, 205, 128, 128, 128}
I

{

{ 1,157, 247, 255, 236, 231, 255, 255, 128, 128, 128},
{121, 141, 235, 255, 225, 227, 255, 255, 128, 128, 128},
{ 45, 99, 188, 251, 195, 217, 255, 224, 128, 128, 128}
}l

{

{ 1, 1,251,255, 213, 255, 128, 128, 128, 128, 128},
{203, 1,248, 255, 255, 128, 128, 128, 128, 128, 128},
{137, 1,177,255, 224, 255, 128, 128, 128, 128, 128}
}
2
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{

{

{253, 9,248, 251, 207, 208, 255, 192, 128, 128, 128},
{175, 13, 224, 243, 193, 185, 249, 198, 255, 255, 128},
{73, 17,171, 221, 161, 179, 236, 167, 255, 234, 128}

}l

{ 1, 95,247, 253, 212, 183, 255, 255, 128, 128, 128},
{239, 90, 244, 250, 211, 209, 255, 255, 128, 128, 128},
{155, 77,195, 248, 188, 195, 255, 255, 128, 128, 128}
}

{

{ 1, 24, 239, 251, 218, 219, 255, 205, 128, 128, 128},
{201, 51, 219, 255, 196, 186, 128, 128, 128, 128, 128},
{ 69, 46, 190, 239, 201, 218, 255, 228, 128, 128, 128}
};

{ 1,191, 251, 255, 255, 128, 128, 128, 128, 128, 128},
{223, 165, 249, 255, 213, 255, 128, 128, 128, 128, 128},
{141, 124, 248, 255, 255, 128, 128, 128, 128, 128, 128}
}1

{

{ 1, 16, 248, 255, 255, 128, 128, 128, 128, 128, 128},
{190, 36, 230, 255, 236, 255, 128, 128, 128, 128, 128},
{149, 1,255,128, 128, 128, 128, 128, 128, 128, 128}
}1

{

{ 1, 226, 255, 128, 128, 128, 128, 128, 128, 128, 128},

{247,192, 255, 128, 128, 128, 128, 128, 128, 128, 128},
{240, 128, 255, 128, 128, 128, 128, 128, 128, 128, 128}
}1

{ 1, 134, 252, 255, 255, 128, 128, 128, 128, 128, 128},
{213, 62, 250, 255, 255, 128, 128, 128, 128, 128, 128},
{ 55, 93, 255, 128, 128, 128, 128, 128, 128, 128, 128}

}l

{

{128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128},
{128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128},
{128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128}
}

2

{

{

{202, 24,213, 235, 186, 191, 220, 160, 240, 175, 255},
{126, 38,182, 232, 169, 184, 228, 174, 255, 187, 128},
{ 61, 46, 138, 219, 151, 178, 240, 170, 255, 216, 128}
}l
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{

{ 1,112,230, 250, 199, 191, 247, 159, 255, 255, 128},
{166, 109, 228, 252, 211, 215, 255, 174, 128, 128, 128},
{39, 77,162,232, 172, 180, 245, 178, 255, 255, 128}
}

{

{ 1, 52, 220, 246, 198, 199, 249, 220, 255, 255, 128},
{124, 74,191, 243, 183, 193, 250, 221, 255, 255, 128},
{ 24, 71,130, 219, 154, 170, 243, 182, 255, 255, 128}
};

{

{ 1,182,225, 249, 219, 240, 255, 224, 128, 128, 128},
{149, 150, 226, 252, 216, 205, 255, 171, 128, 128, 128},
{ 28, 108, 170, 242, 183, 194, 254, 223, 255, 255, 128}
}1

{

{ 1, 81, 230, 252, 204, 203, 255, 192, 128, 128, 128},
{123, 102, 209, 247, 188, 196, 255, 233, 128, 128, 128},
{ 20, 95, 153, 243, 164, 173, 255, 203, 128, 128, 128}
}1

{ 1,222, 248, 255, 216, 213, 128, 128, 128, 128, 128},
{168, 175, 246, 252, 235, 205, 255, 255, 128, 128, 128},
{ 47, 116, 215, 255, 211, 212, 255, 255, 128, 128, 128}
I

{

{ 1,121, 236, 253, 212, 214, 255, 255, 128, 128, 128},
{141, 84, 213, 252, 201, 202, 255, 219, 128, 128, 128},
{ 42, 80, 160, 240, 162, 185, 255, 205, 128, 128, 128}

}l

{

{ 1, 1,255,128, 128, 128, 128, 128, 128, 128, 128},
{244, 1,255,128, 128, 128, 128, 128, 128, 128, 128},
{238, 1,255,128, 128, 128, 128, 128, 128, 128, 128}
}

}

h

---- End code block

14. DCT and WHT Inversion and Macroblock Reconstruction

14.1. Dequantization
After decoding the DCTs/WHTSs as described above, each (quantized)
coefficient in each subblock is multiplied by one of six

dequantization factors, the choice of factor depending on the plane
(Y2, Y, or chroma) and position (DC = coefficient zero, AC = any
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other coefficient). If the current macroblock has overridden the
guantizer level (as described in Section 10), then the six factors

are looked up from two dequantization tables with appropriate scaling
and clamping using the single index supplied by the override.
Otherwise, the frame-level dequantization factors (as described in
Section 9.6) are used. In either case, the multiplies are computed
and stored using 16-bit signed integers.

The two dequantization tables, which may also be found in the
reference decoder file dequant_data.h (Section 20.3), are as follows.

---- Begin code block

static const int dc_glookup[QINDEX_RANGE] =

{
4, 5 6, 7, 8, 9, 10, 10, 11, 12, 13, 14, 15,
16, 17, 17, 18, 19, 20, 20, 21, 21, 22, 22, 23, 23,
24, 25, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35,
36, 37, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 46,
47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59,
60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72,
73, 74, 75, 76, 76, 77, 78, 79, 80, 81, 82, 83, 84,
85, 86, 87, 88, 89, 91, 93, 95, 96, 98, 100, 101, 102,
104, 106, 108, 110, 112, 114, 116, 118, 122, 124, 126, 128, 130,
132, 134, 136, 138, 140, 143, 145, 148, 151, 154, 157,

3

static const int ac_glookup[QINDEX_RANGE] =
{

4, 5 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,

17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29,

30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42,

43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55,

56, 57, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78,

80, 82, 84, 86, 88, 90, 92, 94, 96, 98, 100, 102, 104,

106, 108, 110, 112, 114, 116, 119, 122, 125, 128, 131, 134, 137,
140, 143, 146, 149, 152, 155, 158, 161, 164, 167, 170, 173, 177,
181, 185, 189, 193, 197, 201, 205, 209, 213, 217, 221, 225, 229,
234, 239, 245, 249, 254, 259, 264, 269, 274, 279, 284,

h
---- End code block

Lookup values from the above two tables are directly used in the DC
and AC coefficients in Y1, respectively. For Y2 and chroma, values

from the above tables undergo either scaling or clamping before the
multiplies. Details regarding these scaling and clamping processes

can be found in related lookup functions in dixie.c (Section 20.4).
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14.2. Inverse Transforms

If the Y2 residue block exists (i.e., the macroblock luma mode is not
SPLITMV or B_PRED), it is inverted first (using the inverse WHT) and
the element of the result at row i, column j is used as the Oth
coefficient of the Y subblock at position (i, j), that is, the Y

subblock whose index is (i * 4) +]. As discussed in Section 13, if

the luma mode is B_PRED or SPLITMV, the Oth Y coefficients are part
of the residue signal for the subblocks themselves.

In either case, the inverse transforms for the sixteen Y subblocks
and eight chroma subblocks are computed next. All 24 of these
inversions are independent of each other; their results may (at least
conceptually) be stored in 24 separate 4x4 arrays.

As is done by the reference decoder, an implementation may wish to
represent the prediction and residue buffers as macroblock-sized
arrays (that is, a 16x16 Y buffer and two 8x8 chroma buffers).
Regarding the inverse DCT implementation given below, this requires a
simple adjustment to the address calculation for the resulting

residue pixels.

14.3. Implementation of the WHT Inversion

As previously discussed (see Sections 2 and 13), for macroblocks

encoded using prediction modes other than B_PRED and SPLITMV, the DC
values derived from the DCT transform on the 16 Y blocks are

collected to construct a 25th block of a macroblock (16 Y, 4 U, 4V
constitute the 24 blocks). This 25th block is transformed using a
Walsh-Hadamard transform (WHT).

The inputs to the inverse WHT (that is, the dequantized
coefficients), the intermediate "horizontally detransformed"” signal,
and the completely detransformed residue signal are all stored as
arrays of 16-bit signed integers.

Following the tradition of specifying bitstream format using the

decoding process, we specify the inverse WHT in the decoding process
using the following C-style source code:
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void vp8_short_inv_walsh4x4_c(short *input, short *output)

{

inti;

intal, bl, cl, di;
int a2, b2, c2, d2;
short *ip = input;
short *op = output;
int templ, temp2;

for(i=0;i<4;i++)

al =ip[0] + ip[12];

bl = ip[4] + ip[8];
cl =ip[4] - ip[8];

d1 =ip[0] - ip[12];

op[0] = al + bl;
op[4] = cl + d1;
op[8] = al - bil;
op[12]=d1 - c1;
ip++;
Oop++;

}

Ip = output;

op = output;

for(i=0;i<4;i++)

al =ip[0] +ip[3];
bl =ip[1] + ip[2];
cl =ip[1] - ip[2];
d1 =ip[O] - ip[3];

a2 =al + bl;
b2 =cl +d1;
c2=al - bi;
d2 =d1 -cl;
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op[0] = (a2+3)>>3;
op[1] = (b2+3)>>3;
op[2] = (c2+3)>>3;
op[3] = (d2+3)>>3;

ip+=4,
op+=4;
}
}

---- End code block

In the case that there is only one non-zero DC value in input, the
inverse transform can be simplified to the following:

---- Begin code block

void vp8_short_inv_walsh4x4_1 c(short *input, short *output)
{

inti;

intal;

short *op=output;

al = ((input[0] + 3)>>3);

for(i=0;i<4;i++)

op[0] = al;
op[l] = al;
op[2] =al;
op[3] =al;
op+=4,
}
}

---- End code block

It should be noted that a conforming decoder should implement the
inverse transform using exactly the same rounding to achieve bit-wise
matching output to the output of the process specified by the above

C source code.

The reference decoder WHT inversion may be found in the file
idct_add.c (Section 20.8).
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14.4. Implementation of the DCT Inversion

All of the DCT inversions are computed in exactly the same way. In
principle, VP8 uses a classical 2-D inverse discrete cosine
transform, implemented as two passes of 1-D inverse DCT. The 1-D
inverse DCT was calculated using a similar algorithm to what was
described in [Loeffler]. However, the paper only provided the

8-point and 16-point version of the algorithms, which was adapted by
On2 to perform the 4-point 1-D DCT.

Accurate calculation of 1-D DCT of the above algorithm requires
infinite precision. VP8 of course can use only a finite-precision
approximation. Also, the inverse DCT used by VP8 takes care of
normalization of the standard unitary transform; that is, every
dequantized coefficient has roughly double the size of the
corresponding unitary coefficient. However, at all but the highest
datarates, the discrepancy between transmitted and ideal coefficients
is due almost entirely to (lossy) compression and not to errors
induced by finite-precision arithmetic.

The inputs to the inverse DCT (that is, the dequantized
coefficients), the intermediate "horizontally detransformed" signal,
and the completely detransformed residue signal are all stored as
arrays of 16-bit signed integers. The details of the computation are
as follows.

It should also be noted that this implementation makes use of the
16-bit fixed-point version of two multiplication constants:

sqrt(2) * cos (pi/8)

sqrt(2) * sin (pi/8)

Because the first constant is bigger than 1, to maintain the same
16-bit fixed-point precision as the second one, we make use of the
fact that

X*a=Xx+x*a-1)

therefore

X * sgrt(2) * cos (pi/8) = x + x * (sqrt(2) * cos(pi/8)-1)
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---- Begin code block

/* IDCT implementation */
static const int cospi8sqrt2minus1=20091;
static const int sinpi8sqrt2 ~ =35468;
void short_idct4x4lim_c(short *input, short *output, int pitch)
{
inti;
intal, bl, ci, di;

short *ip=input;

short *op=output;

int templ, temp2;

int shortpitch = pitch>>1;

for(i=0;i<4;i++)

al = ip[0]+ip[8];
b1 = ip[0]-ip[8];

templ = (ip[4] * sinpi8sqrt2)>>16;
temp2 = ip[12]+((ip[12] * cospi8sqrt2minus1)>>16);
cl =templ - temp2;

templ = ip[4] + ((ip[4] * cospi8sqrt2minus1)>>16);
temp2 = (ip[12] * sinpi8sqrt2)>>16;
dl =templ + temp2;

op[shortpitch*0] = al+d1,;
op[shortpitch*3] = al1-d1;
op[shortpitch*1] = bl+cl;
op[shortpitch*2] = b1-c1;

ip++;
op++;
}
ip = output;
op = output;
for(i=0;i<4;i++)

al = ip[0]+ip[2];
bl =ip[0]-ip[2];

templ = (ip[1] * sinpi8sqrt2)>>16;
temp2 = ip[3]+((ip[3] * cospi8sqgrt2minus1)>>16);
cl =templ - temp2;

templ = ip[1] + ((ip[1] * cospi8sqrt2minus1)>>16);
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temp2 = (ip[3] * sinpi8sqrt2)>>16;
dl =templ + temp2;

op[0] = (a1+d1+4)>>3;
op[3] = (al-d1+4)>>3;
op[1] = (b1+cl+4)>>3;
op[2] = (b1-c1+4)>>3;

ip+=shortpitch;
op+=shortpitch;
}
}

---- End code block

The reference decoder DCT inversion may be found in the file
idct_add.c (Section 20.8).

14.5. Summation of Predictor and Residue

Finally, the prediction and residue signals are summed to form the
reconstructed macroblock, which, except for loop filtering (taken up
next), completes the decoding process.

The summing procedure is fairly straightforward, having only a couple
of details. The prediction and residue buffers are both arrays of
16-bit signed integers. Each individual (Y, U, and V pixel) result

is calculated first as a 32-bit sum of the prediction and residue,

and is then saturated to 8-bit unsigned range (using, say, the
clamp255 function defined above) before being stored as an 8-bit
unsigned pixel value.

VP8 also supports a mode where the encoding of a bitstream guarantees
all reconstructed pixel values between 0 and 255; compliant

bitstreams of such requirements have the clamp_type bit in the frame
header setto 1. In such a case, the clamp255 function is no longer
required.

The summation process is the same, regardless of the (intra or inter)
mode of prediction in effect for the macroblock. The reference
decoder implementation of reconstruction may be found in the file
idct_add.c.

Bankoski, et al. Informational [Page 83]



RFC 6386 VP8 Data Format and Decoding Guide = November 2011

15. Loop Filter

Loop filtering is the last stage of frame reconstruction and the
next-to-last stage of the decoding process. The loop filter is
applied to the entire frame after the summation of predictor and
residue signals, as described in Section 14.

The purpose of the loop filter is to eliminate (or at least reduce)
visually objectionable artifacts associated with the semi-
independence of the coding of macroblocks and their constituent
subblocks.

As was discussed in Section 5, the loop filter is "integral” to

decoding, in that the results of loop filtering are used in the

prediction of subsequent frames. Consequently, a functional decoder
implementation must perform loop filtering exactly as described here.
This is distinct from any postprocessing that may be applied only to
the image immediately before display; such postprocessing is entirely
at the option of the implementor (and/or user) and has no effect on
decoding per se.

The baseline frame-level parameters controlling the loop filter are
defined in the frame header (Section 9.4) along with a mechanism for
adjustment based on a macroblock’s prediction mode and/or reference
frame. The first is a flag (filter_type) selecting the type of

filter (normal or simple); the other two are numbers

(loop_filter_level and sharpness_level) that adjust the strength or
sensitivity of the filter. As described in Sections 9.3 and 10,
loop_filter_level may also be overridden on a per-macroblock basis
using segmentation.

Loop filtering is one of the more computationally intensive aspects
of VP8 decoding. This is the reason for the existence of the
optional, less-demanding simple filter type.

Note carefully that loop filtering must be skipped entirely if
loop_filter_level at either the frame header level or macroblock
override level is 0. In no case should the loop filter be run with a
value of 0; it should instead be skipped.

We begin by discussing the aspects of loop filtering that are
independent of the controlling parameters and type of filter chosen.
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15.1. Filter Geometry and Overall Procedure
The Y, U, and V planes are processed independently and identically.

The loop filter acts on the edges between adjacent macroblocks and on
the edges between adjacent subblocks of a macroblock. All such edges
are horizontal or vertical. For each pixel position on an edge, a

small number (two or three) of pixels adjacent to either side of the
position are examined and possibly modified. The displacements of
these pixels are at a right angle to the edge orientation; that is,

for a horizontal edge, we treat the pixels immediately above and

below the edge position, and for a vertical edge, we treat the pixels
immediately to the left and right of the edge.

We call this collection of pixels associated to an edge position a
segment; the length of a segment is 2, 4, 6, or 8. Excepting that

the normal filter uses slightly different algorithms for, and either

filter may apply different control parameters to, the edges between
macroblocks and those between subblocks, the treatment of edges is
quite uniform: All segments straddling an edge are treated

identically; there is no distinction between the treatment of

horizontal and vertical edges, whether between macroblocks or between
subblocks.

As a consequence, adjacent subblock edges within a macroblock may be
concatenated and processed in their entirety. There is a single
8-pixel-long vertical edge horizontally centered in each of the U and

V blocks (the concatenation of upper and lower 4-pixel edges between
chroma subblocks), and three 16-pixel-long vertical edges at

horizontal positions 1/4, 1/2, and 3/4 the width of the luma

macroblock, each representing the concatenation of four 4-pixel
sub-edges between pairs of Y subblocks.

The macroblocks comprising the frame are processed in the usual
raster-scan order. Each macroblock is "responsible for" the
inter-macroblock edges immediately above and to the left of it (but
not the edges below and to the right of it), as well as the edges
between its subblocks.

For each macroblock M, there are four filtering steps, which are,
(almost) in order:

1. If M is not on the leftmost column of macroblocks, filter across
the left (vertical) inter-macroblock edge of M.

2. Filter across the vertical subblock edges within M.
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3. If M is not on the topmost row of macroblocks, filter across the
top (horizontal) inter-macroblock edge of M.

4. Filter across the horizontal subblock edges within M.

We write MY, MU, and MV for the planar constituents of M, that is,
the 16x16 luma block, 8x8 U block, and 8x8 V block comprising M.

In step 1, for each of the three blocks MY, MU, and MV, we filter
each of the (16 luma or 8 chroma) segments straddling the column
separating the block from the block immediately to the left of it,
using the inter-macroblock filter and controls associated to the
loop_filter_level and sharpness_level.

In step 4, we filter across the (three luma and one each for U and V)
vertical subblock edges described above, this time using the
inter-subblock filter and controls.

Steps 2 and 4 are skipped for macroblocks that satisfy both of the
following two conditions:

1. Macroblock coding mode is neither B_PRED nor SPLITMV; and
2. There is no DCT coefficient coded for the whole macroblock.

For these macroblocks, loop filtering for edges between subblocks
internal to a macroblock is effectively skipped. This skip strategy
significantly reduces VP8 loop-filtering complexity.

Edges between macroblocks and those between subblocks are treated
with different control parameters (and, in the case of the normal

filter, with different algorithms). Except for pixel addressing,

there is no distinction between the treatment of vertical and

horizontal edges. Luma edges are always 16 pixels long, chroma edges
are always 8 pixels long, and the segments straddling an edge are
treated identically; this of course facilitates vector processing.

Because many pixels belong to segments straddling two or more edges,
and so will be filtered more than once, the order in which edges are
processed given above must be respected by any implementation.
Within a single edge, however, the segments straddling that edge are
disjoint, and the order in which these segments are processed is
immaterial.

Before taking up the filtering algorithms themselves, we should
emphasize a point already made: Even though the pixel segments
associated to a macroblock are antecedent to the macroblock (that is,
lie within the macroblock or in already-constructed macroblocks), a
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macroblock must not be filtered immediately after its
"reconstruction” (described in Section 14). Rather, the loop filter
applies after all the macroblocks have been "reconstructed"” (i.e.,
had their predictor summed with their residue); correct decoding is
predicated on the fact that already-constructed portions of the
current frame referenced via intra-prediction (described in

Section 12) are not yet filtered.

15.2. Simple Filter

Having described the overall procedure of, and pixels affected by,

the loop filter, we turn our attention to the treatment of individual
segments straddling edges. We begin by describing the simple filter,
which, as the reader might guess, is somewhat simpler than the normal
filter.

Note that the simple filter only applies to luma edges. Chroma edges
are left unfiltered.

Roughly speaking, the idea of loop filtering is, within limits, to

reduce the difference between pixels straddling an edge. Differences
in excess of a threshold (associated to the loop_filter_level) are
assumed to be "natural” and are unmodified; differences below the
threshold are assumed to be artifacts of quantization and the
(partially) separate coding of blocks, and are reduced via the
procedures described below. While the loop_filter_level is in
principle arbitrary, the levels chosen by a VP8 compressor tend to be
correlated to quantizer levels.

Most of the filtering arithmetic is done using 8-bit signed operands
(having a range of -128 to +127, inclusive), supplemented by 16-bit
temporaries holding results of multiplies.

Sums and other temporaries need to be "clamped" to a valid signed
8-bit range:

---- Begin code block

int8 c(int v)

return (int8) (v <-128 ?-128: (v< 128 ? v : 127));

---- End code block

Bankoski, et al. Informational [Page 87]



RFC 6386 VP8 Data Format and Decoding Guide = November 2011

Since pixel values themselves are unsigned 8-bit numbers, we need to
convert between signed and unsigned values:

---- Begin code block

/* Convert pixel value (0 <= v <= 255) to an 8-hit signed
number. */
int8 u2s(Pixel v) { return (int8) (v - 128);}

/* Clamp, then convert signed number back to pixel value. */
Pixel s2u(int v) { return (Pixel) (c(v) + 128);}

---- End code block

Filtering is often predicated on absolute-value thresholds. The
following function is the equivalent of the standard library function
abs, whose prototype is found in the standard header file stdlib.h.
For us, the argument v is always the difference between two pixels
and lies in the range -255 <=v <= +255.

---- Begin code block
int abs(int v) { returnv < 0? -v:v;}

---- End code block

An actual implementation would of course use inline functions or
macros to accomplish these trivial procedures (which are used by both
the normal and simple loop filters). An optimal implementation would
probably express them in machine language, perhaps using single
instruction, multiple data (SIMD) vector instructions. On many SIMD
processors, the saturation accomplished by the above clamping
function is often folded into the arithmetic instructions themselves,
obviating the explicit step taken here.

To simplify the specification of relative pixel positions, we use the
word "before" to mean "immediately above" (for a vertical segment
straddling a horizontal edge) or "immediately to the left of" (for a
horizontal segment straddling a vertical edge), and the word "after"
to mean "immediately below" or "immediately to the right of".

Given an edge, a segment, and a limit value, the simple loop filter
computes a value based on the four pixels that straddle the edge (two
either side). If that value is below a supplied limit, then, very

roughly speaking, the two pixel values are brought closer to each
other, "shaving off" something like a quarter of the difference. The
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same procedure is used for all segments straddling any type of edge,
regardless of the nature (inter-macroblock, inter-subblock, luma, or
chroma) of the edge; only the limit value depends on the edge type.

The exact procedure (for a single segment) is as follows; the
subroutine common_adjust is used by both the simple filter presented
here and the normal filters discussed in Section 15.3.

---- Begin code block

int8 common_adjust(
int use_outer_taps, /*filter is 2 or 4 taps wide */
const Pixel *P1, /* pixel before PO */

Pixel *PO, [* pixel before edge */

Pixel *QO0, [* pixel after edge */

const Pixel *Q1  /* pixel after QO */
) {

cint8 pl = u2s(*P1); /* retrieve and convert all 4 pixels */
cint8 p0 = u2s(*P0);
cint8 q0 = u2s(*Q0);
cint8 g1 = u2s(*Q1);

/* Disregarding clamping, when "use_outer_taps" is false,
"a" is 3*(q0-p0). Since we are about to divide "a" by
8, in this case we end up multiplying the edge
difference by 5/8.
When "use_outer_taps" is true (as for the simple filter),
"a"is p1 - 3*p0 + 3*q0 - g1, which can be thought of as
a refinement of 2*(q0 - p0), and the adjustment is
something like (qO - p0)/4. */

int8 a = c((use_outer_taps? c(pl - q1) : 0) + 3*(q0 - p0));

/* b is used to balance the rounding of a/8 in the case where
the "fractional” part "f* of a/8 is exactly 1/2. */

cint8 b = (c(a + 3)) >> 3;
/* Divide a by 8, rounding up when f >= 1/2.

Although not strictly part of the C language,

the right shift is assumed to propagate the sign bit. */
a=c(a+4)>>3;

/* Subtract "a" from 0, "bringing it closer" to p0. */

*QO0 = s2u(qO - a);
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/* Add "a" (with adjustment "b") to pO, "bringing it closer"
to qO.

The clamp of "a+b", while present in the reference decoder,
is superfluous; we have -16 <= a <= 15 at this point. */

*P0 = s2u(p0 + b);

return a,

}
---- End code block

---- Begin code block

void simple_segment(
uint8 edge_limit, /* do nothing if edge difference
exceeds limit */
const Pixel *P1, /* pixel before PO */
Pixel *PO, [* pixel before edge */
Pixel *QO0, [* pixel after edge */
const Pixel *Q1  /* pixel after QO */

{
if ((abs(*PO0 - *Q0)*2 + abs(*P1 - *Q1)/2) <= edge_limit))
common_adjust(1, P1, PO, QO, Q1); /* use outer taps */
}

---- End code block

We make a couple of remarks about the rounding procedure above. When
b is zero (that is, when the "fractional part" of a is not 1/2), we

are (except for clamping) adding the same number to p0 as we are
subtracting from 0. This preserves the average value of p0O and qO,

but the resulting difference between p0 and qO is always even; in
particular, the smallest non-zero gradation +-1 is not possible here.

When b is one, the value we add to p0 (again except for clamping) is
one less than the value we are subtracting from 0. In this case,

the resulting difference is always odd (and the small gradation +-1

is possible), but the average value is reduced by 1/2, yielding, for
instance, a very slight darkening in the luma plane. (In the very
unlikely event of appreciable darkening after a large number of
interframes, a compressor would of course eventually compensate for
this in the selection of predictor and/or residue.)
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The derivation of the edge_limit value used above, which depends on
the loop_filter_level and sharpness_level, as well as the type of

edge being processed, will be taken up after we describe the normal
loop filtering algorithm below.

15.3. Normal Filter

The normal loop filter is a refinement of the simple loop filter; all

of the general discussion above applies here as well. In particular,
the functions c, u2s, s2u, abs, and common_adjust are used by both
the normal and simple filters.

As mentioned above, the normal algorithms for inter-macroblock and
inter-subblock edges differ. Nonetheless, they have a great deal in
common: They use similar threshold algorithms to disable the filter
and to detect high internal edge variance (which influences the
filtering algorithm). Both algorithms also use, at least

conditionally, the simple filter adjustment procedure described
above.

The common thresholding algorithms are as follows.

---- Begin code block

/* All functions take (among other things) a segment (of length
at most 4 + 4 = 8) symmetrically straddling an edge.

The pixel values (or pointers) are always given in order,
from the "beforemost” to the "aftermost". So, for a
horizontal edge (written "["), an 8-pixel segment would be
ordered p3 p2 p1 p0|q0 gl g2 g3.*

[* Filtering is disabled if the difference between any two
adjacent "interior" pixels in the 8-pixel segment exceeds
the relevant threshold (I). A more complex thresholding
calculation is done for the group of four pixels that
straddle the edge, in line with the calculation in
simple_segment() above. */
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int filter_yes(
uint8 I, /* limit on interior differences */
uint8 E, /* limit at the edge */

cint8 p3, cint8 p2, cint8 p1, cint8 p0, /* pixels before
edge */
cint8 qO, cint8 g1, cint8 g2, cint8 g3 /* pixels after
edge */
) {

return (abs(pO - q0)*2 + abs(pl - q1)/2) <= E
&& abs(p3-p2) <=1 && abs(p2-pl) <=1 &&
abs(pl - p0) <=
&& abs(g3-g2) <=1 && abs(g2-9l) <=1 &&
abs(ql - q0) <=1,

---- End code block

---- Begin code block

/* Filtering is altered if (at least) one of the differences
on either side of the edge exceeds a threshold (we have
"high edge variance"). */

int hev(
uint8 threshold,
cint8 p1, cint8 pO, /* pixels before edge */
cint8 qO, cint8 q1 /* pixels after edge */

) {

}
---- End code block

return abs(pl - p0) > threshold || abs(gl - g0) > threshold;

The subblock filter is a variant of the simple filter. In fact, if

we have high edge variance, the adjustment is exactly as for the
simple filter. Otherwise, the simple adjustment (without outer taps)

is applied, and the two pixels one step in from the edge pixels are
adjusted by roughly half the amount by which the two edge pixels are
adjusted; since the edge adjustment here is essentially 3/8 the edge
difference, the inner adjustment is approximately 3/16 the edge
difference.
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---- Begin code block

void subblock_filter(
uint8 hev_threshold, /* detect high edge variance */
uint8 interior_limit, /* possibly disable filter */
uint8 edge_limit,
cint8 *P3, cint8 *P2, int8 *P1, int8 *P0, /* pixels before

edge */
int8 *QO, int8 *Q1, cint8 *Q2, cint8 *Q3 /* pixels after
edge */
)
cint8 p3 = u2s(*P3), p2 = u2s(*P2), p1 = u2s(*P1),
p0 = u2s(*P0);
cint8 g0 = u2s(*Q0), g1 = u2s(*Q1), g2 = u2s(*Q2),
a3 = u2s(*Q3);
if (filter_yes(interior_limit, edge_limit, q3, g2, q1, q0,
{pO, pl, p2, p3))
const int hv = hev(hev_threshold, p1, p0, g0, q1);
cint8 a = (common_adjust(hv, P1, PO, QO, Q1) + 1) >> 1;
if (thv) {
*Q1 =s2u(ql - a);
*P1 = s2u(pl + a);
}
}
}

---- End code block

The inter-macroblock filter has potentially wider scope. If the edge
variance is high, it performs the simple adjustment (using the outer

taps, just like the simple filter and the corresponding case of the

normal subblock filter). If the edge variance is low, we begin with

the same basic filter calculation and apply multiples of it to pixel

pairs symmetric about the edge; the magnitude of adjustment decays as
we move away from the edge and six of the pixels in the segment are

affected.
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---- Begin code block

void MBfilter(
uint8 hev_threshold, /* detect high edge variance */
uint8 interior_limit, /* possibly disable filter */
uint8 edge_limit,
cint8 *P3, int8 *P2, int8 *P1, int8 *P0, /* pixels before
edge */
int8 *QO, int8 *Q1, int8 *Q2, cint8 *Q3 /* pixels after
edge */
) {
cint8 p3 = u2s(*P3), p2 = u2s(*P2), p1 = u2s(*P1),
p0 = u2s(*P0);
cint8 g0 = u2s(*Q0), g1 = u2s(*Q1), g2 = u2s(*Q2),
a3 = u2s(*Q3);

if (filter_yes(interior_limit, edge_limit, q3, g2, q1, q0,
PO, p1, p2, p3))

if 'hev(hev_threshold, p1, p0, 0, q1))

/* Same as the initial calculation in "common_adjust",
w is something like twice the edge difference */

const int8 w = c(c(pl - q1) + 3*(q0 - p0));

/* 9/64 is approximately 9/63 = 1/7, and 1<<7 = 128 =
2*64. So this a, used to adjust the pixels adjacent
to the edge, is something like 3/7 the edge
difference. */

int8 a = c((27*w + 63) >> 7);

*QO0 =s2u(q0 - a); *P0 =s2u(p0 + a);

/* Next two are adjusted by 2/7 the edge difference */

a=c((18*w + 63) >>7);

*Q1 =s2u(ql - a); *P1 =s2u(pl + a);

/* Last two are adjusted by 1/7 the edge difference */

a=c((9*w + 63) >>7);

*Q2 =s2u(qg2 - a); *P2 =s2u(p2 + a);
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} else /* if hev, do simple filter */
common_adjust(1, P1, PO, QO, Q1); /* using outer
taps */

}
}

---- End code block

15.4. Calculation of Control Parameters

We conclude the discussion of loop filtering by showing how the
thresholds supplied to the procedures above are derived from the two
control parameters sharpness_level (an unsigned 3-bit number having
maximum value 7) and loop_filter_level (an unsigned 6-bit number
having maximum value 63).

While the sharpness_level is constant over the frame, individual
macroblocks may override the loop_filter_level with one of four
possibilities supplied in the frame header (as described in
Section 10).

Both the simple and normal filters disable filtering if a value
derived from the four pixels that straddle the edge (2 either side)
exceeds a threshold / limit value.

---- Begin code block
/* Luma and Chroma use the same inter-macroblock edge limit */
uint8 mbedge_limit = ((loop_filter_level + 2) * 2) +

interior_limit;

/* Luma and Chroma use the same inter-subblock edge limit */
uint8 sub_bedge_limit = (loop_filter_level * 2) + interior_limit;

---- End code block

The remaining thresholds are used only by the normal filters. The
filter-disabling interior difference limit is the same for all edges
(luma, chroma, inter-subblock, inter-macroblock) and is given by the
following.
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---- Begin code block
uint8 interior_limit = loop_filter_level;
if (sharpness_level)
interior_limit >>= sharpness_level >4 ? 2:1;
if (interior_limit > 9 - sharpness_level)

interior_limit = 9 - sharpness_level;

if (linterior_limit)
interior_limit = 1;

---- End code block

Finally, we give the derivation of the high edge-variance threshold,
which is also the same for all edge types.

---- Begin code block
uint8 hev_threshold = 0;
if (we_are_decoding_akey frame) /* current frame is a key frame */
if (loop_filter_level >= 40)
hev_threshold = 2;

else if (loop_filter_level >= 15)
hev_threshold = 1;

}
else [* current frame is an interframe */
if (loop_filter_level >= 40)
hev_threshold = 3;
else if (loop_filter_level >= 20)
hev_threshold = 2;
else if (loop_filter_level >= 15)
hev_threshold = 1;
}

---- End code block
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16. Interframe Macroblock Prediction Records

We describe the layout and semantics of the prediction records for
macroblocks in an interframe.

After the feature specification (which is described in Section 10 and
is identical for intraframes and interframes), there comes a
Bool(prob_intra), which indicates inter-prediction (i.e., prediction
from prior frames) when true and intra-prediction (i.e., prediction
from already-coded portions of the current frame) when false. The
zero-probability prob_intra is set by field J of the frame header.

16.1. Intra-Predicted Macroblocks
For intra-prediction, the layout of the prediction data is
essentially the same as the layout for key frames, although the

contexts used by the decoding process are slightly different.

As discussed in Section 8, the "outer" Y mode here uses a different
tree from that used in key frames, repeated here for convenience.

---- Begin code block
const tree_index ymode_tree [2 * (hum_ymodes - 1)] =

-DC_PRED, 2, /* root: DC_PRED ="0", "1" subtree */
4, 6, /*"1" subtree has 2 descendant subtrees */
-V_PRED, -H_PRED, /*"10"subtree: V_PRED ="100",
H_PRED ="101"*
-TM_PRED, -B_PRED /*"11" subtree: TM_PRED = "110",
B _PRED ="111"%*/
3

---- End code block

The probability table used to decode this tree is variable. As
described in Section 11, it (along with the similarly treated UV
table) can be updated by field J of the frame header. Similar to the
coefficient-decoding probabilities, such updates are cumulative and
affect all ensuing frames until the next key frame or explicit

update. The default probabilities for the Y and UV tables are:

---- Begin code block

Prob ymode_prob [num_ymodes - 1] = {112, 86, 140, 37};
Prob uv_mode_prob [num_uv_modes - 1] ={ 162, 101, 204};

---- End code block
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These defaults must be restored after detection of a key frame.

Just as for key frames, if the Y mode is B_PRED, there next comes an
encoding of the intra_bpred mode used by each of the sixteen Y
subblocks. These encodings use the same tree as does that for key
frames but, in place of the contexts used in key frames, these
encodings use the single fixed probability table.

---- Begin code block

const Prob bmode_prob [num_intra_bmodes - 1] = {
120, 90, 79, 133, 87, 85, 80, 111, 151
h

---- End code block

Last comes the chroma mode, again coded using the same tree as that
used for key frames, this time using the dynamic uv_mode_prob table
described above.

The calculation of the intra-prediction buffer is identical to that
described for key frames in Section 12.

16.2. Inter-Predicted Macroblocks

Otherwise (when the above bool is true), we are using
inter-prediction (which of course only happens for interframes), to
which we now restrict our attention.

The next datum is then another bool, B(prob_last), selecting the
reference frame. If O, the reference frame is the previous frame
(the last frame); if 1, another bool (prob_gf) selects the reference
frame between the golden frame (0) and the altref frame (1). The
probabilities prob_last and prob_gf are set in field J of the frame
header.

Together with setting the reference frame, the purpose of inter-mode
decoding is to set a motion vector for each of the sixteen Y
subblocks of the current macroblock. These settings then define the
calculation of the inter-prediction buffer (detailed in Section 18).
While the net effect of inter-mode decoding is straightforward, the
implementation is somewhat complex; the (lossless) compression
achieved by this method justifies the complexity.
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After the reference frame selector comes the mode (or motion vector
reference) applied to the macroblock as a whole, coded using the
following enumeration and tree. Setting mv_nearest = num_ymodes is a
convenience that allows a single variable to unambiguously hold an
inter- or intra-prediction mode.

---- Begin code block

typedef enum

{

mv_nearest = num_ymodes, /* use "nearest" motion vector
for entire MB */

mv_neatr, [* use "next nearest" " */

mv_zero, [* use zero " */

mv_new, * use explicit offset from
implicit "™ */

mv_split, /* use multiple motion vectors */

num_mv_refs = mv_split + 1 - mv_nearest

}

mv_ref;

const tree_index mv_ref_tree [2 * (num_mv_refs - 1)] =

{
-mv_zero, 2, [* zero ="0" */
-mv_nearest, 4, [* nearest = "10" */
-mv_near, 6, [* near = "110" */
-mv_new, -mv_split  /*new ="1110", split ="1111" */
%

---- End code block

16.3. Mode and Motion Vector Contexts

The probability table used to decode the mv_ref, along with three
reference motion vectors used by the selected mode, is calculated via
a survey of the already-decoded motion vectors in (up to) 3 nearby
macroblocks.

The algorithm generates a sorted list of distinct motion vectors

adjacent to the search site. The best_mv is the vector with the

highest score. The mv_nearest is the non-zero vector with the

highest score. The mv_near is the non-zero vector with the next
highest score. The number of motion vectors coded using the SPLITMV
mode is scored using the same weighting and is returned with the
scores of the best, nearest, and near vectors.
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The three adjacent macroblocks above, left, and above-left are
considered in order. If the macroblock is intra-coded, no action is
taken. Otherwise, the motion vector is compared to other previously
found motion vectors to determine if it has been seen before, and if
so contributes its weight to that vector; otherwise, it enters a new
vector in the list. The above and left vectors have twice the weight
of the above-left vector.

As is the case with many contexts used by VP8, it is possible for
macroblocks near the top or left edges of the image to reference
blocks that are outside the visible image. VP8 provides a border of
1 macroblock filled with 0x0 motion vectors left of the left edge,
and a border filled with 0,0 motion vectors of 1 macroblocks above
the top edge.

Much of the process is more easily described in C than in English.

The reference code for this can be found in modemv.c (Section 20.11).
The calculation of reference vectors, probability table, and,

finally, the inter-prediction mode itself is implemented as follows.

---- Begin code block
typedef union

unsigned int as_int;
MV as_myv;
}int_mv; [* facilitates rapid equality tests */

static void mv_bias(MODE_INFO *x,int refframe, int_mv *mvp,
int * ref_frame_sign_bias)
{
MV xmv;
Xmv = X->mbmi.mv.as_myv;
if (ref_frame_sign_bias[x->mbmi.ref_frame] I=
ref_frame_sign_bias[refframe] )
{
xmv.row*=-1;
Xmv.col*=-1;
}
mvp->as_mv = xmy;

}

---- End code block
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---- Begin code block
void vp8_clamp_mv(MV *mv, const MACROBLOCKD *xd)

if ( mv->col < (xd->mb_to_left_edge - LEFT_TOP_MARGIN) )
mv->col = xd->mb_to_left edge - LEFT_TOP_MARGIN;

else if ( mv->col > xd->mb_to_right_edge + RIGHT _BOTTOM_MARGIN )
mv->col = xd->mb_to_right_edge + RIGHT_BOTTOM_MARGIN;

if ( mv->row < (xd->mb_to_top_edge - LEFT_TOP_MARGIN) )
mv->row = xd->mb_to_top_edge - LEFT_TOP_MARGIN;

else if ( mv->row > xd->mb_to_bottom_edge + RIGHT_BOTTOM_MARGIN )
mv->row = xd->mb_to_bottom_edge + RIGHT_BOTTOM_MARGIN;

}
---- End code block

In the function vp8_find_near_mvs(), the vectors "nearest" and "near"
are used by the corresponding modes.

The vector best_mv is used as a base for explicitly coded motion
vectors.

The first three entries in the return value cnt are (in order)
weighted census values for "zero", "nearest", and "near" vectors.

The final value indicates the extent to which SPLITMV was used by the
neighboring macroblocks. The largest possible "weight" value in each

case is 5.

---- Begin code block

void vp8_find_near_mvs
(
MACROBLOCKD *xd,
const MODE_INFO *here,
MV *nearest,
MV *near,
MV *best_mv,
int cnt[4],
int refframe,
int * ref_frame_sign_bias
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const MODE_INFO *above = here - xd->mode_info_stride;
const MODE_INFO *left = here - 1;
const MODE_INFO *aboveleft = above - 1,

int_mv near_mvs[4];
int_mv *mv = near_mvs;
int *cntx = cnt;

enum {CNT_ZERO, CNT_NEAREST, CNT_NEAR, CNT_SPLITMV};

[* Zero accumulators */
mv[0].as_int = mv[1].as_int = mv[2].as_int = 0;
cnt[0] = cnt[1] = cnt[2] = cnt[3] = O;

I* Process above */
if (@above->mbmi.ref_frame != INTRA_FRAME) {
if (above->mbmi.mv.as_int) {
(++mv)->as_int = above->mbmi.mv.as_int;
mv_bias(above, refframe, mv, ref_frame_sign_bias);
++cntx;
}
*cntx += 2;

}

/* Process left */
if (left->mbmi.ref_frame != INTRA_FRAME) {
if (left->mbmi.mv.as_int) {
int_mv this_mv;

this_mv.as_int = left->mbmi.mv.as_int;
mv_bias(left, refframe, &this_mv, ref_frame_sign_hias);

if (this_mv.as_int = mv->as_int) {
(++mv)->as_int = this_mv.as_int;
++cntx;

*cntx += 2;
} else
cnt[CNT_ZERO] += 2;
}

/* Process above left */
if (aboveleft->mbmi.ref_frame != INTRA_FRAME) {
if (aboveleft->mbmi.mv.as_int) {
int_mv this_mv;

this_mv.as_int = aboveleft->mbmi.mv.as_int;

mv_bias(aboveleft, refframe, &this_mv,
ref frame_sign_bias);
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if (this_mv.as_int = mv->as_int) {
(++mv)->as_int = this_mv.as_int;
++cntx;

}

*entx += 1,

} else
cnt[CNT_ZERO] +=1;
}

/* If we have three distinct MVs ... */
if (cNt{CNT_SPLITMV]) {
[* See if above-left MV can be merged with NEAREST */
if (mv->as_int == near_mvs[CNT_NEAREST].as_int)
cnt{CNT_NEAREST] += 1;
}

cnt[CNT_SPLITMV] = ((above->mbmi.mode == SPLITMV)
+ (left->mbmi.mode == SPLITMV)) * 2
+ (aboveleft->mbmi.mode == SPLITMV);

[* Swap near and nearest if necessary */
if (cNt{CNT_NEAR] > cnt[CNT_NEAREST]) {
int tmp;
tmp = cnt[CNT_NEAREST];
cnt[CNT_NEAREST] = cnt[CNT_NEAR];
cnt[CNT_NEAR] = tmp;
tmp = near_mvs[CNT_NEAREST].as_int;
near_mvs[CNT_NEAREST].as_int = near_mvs[CNT_NEAR].as_int;
near_mvs[CNT_NEAR].as_int = tmp;
}

/* Use near_mvsJ[0] to store the "best" MV */
if (cnt[CNT_NEAREST] >= cnt[CNT_ZERQ])
near_mvs[CNT_ZERO] = near_mvs[CNT_NEAREST];

/* Set up return values */

*best_mv = near_mvs|[0].as_mv;

*nearest = near_mvs[CNT_NEAREST].as_mv;
*near = near_mvs[CNT_NEAR].as_mv;

vp8_clamp_mv(nearest, xd);

vp8_clamp_mv(near, xd);

vp8_clamp_mv(best_mv, xd); //TODO: Move this up before
the copy

}
---- End code block
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The mv_ref probability table (mv_ref _p) is then derived from the
census as follows.

---- Begin code block

const int vp8_mode_contexts[6][4] =

{
{7, 1, 1, 143, },
{ 14, 18, 14, 107, },
{135, 64, 57, 68, },
{ 60, 56, 128, 65, },
{159, 134, 128, 34, },
{234, 188, 128, 28, },
}

---- End code block

---- Begin code block

vp8_prob *vp8_mv_ref _probs(vp8_prob mv_ref p[VP8_MVREFS-1],
int cnt[4])

mv_ref_p[0] = vp8_mode_contexts [cnt[0]] [O];
mv_ref p[1] = vp8_mode_contexts [cnt[1]] [1];
mv_ref p[2] = vp8_mode_contexts [cnt[2]] [2];
mv_ref p[3] = vp8_mode_contexts [cnt[3]] [3];
return p;

}
---- End code block

Once mv_ref_p is established, the mv_ref is decoded as usual.

---- Begin code block
mvr = (mv_ref) treed_read(d, mv_ref_tree, mv_ref_p);

---- End code block

For the first four inter-coding modes, the same motion vector is used
for all the Y subblocks. The first three modes use an implicit
motion vector.
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+ + +
| Mode | Instruction |
+ + +
| mv_nearest | Use the nearest vector returned by |
| | vp8_find_near_mvs. |
|
| mv_near | Use the near vector returned by vp8_find_near_mvs. |
| I
| mv_zero | Use a zero vector; that is, predict the current |
| macroblock from the corresponding macroblock in the |
| prediction frame.

|

| |

| NEWMV | This mode is followed by an explicitly coded motion |
| | vector (the format of which is described in the next |

| | section) that is added (component-wise) to the |

| | best_mv reference vector returned by find_near_mvs |

| | and applied to all 16 subblocks. |
+ + +

16.4. Split Prediction

The remaining mode (SPLITMV) causes multiple vectors to be applied to
the Y subblocks. It is immediately followed by a partition

specification that determines how many vectors will be specified and
how they will be assigned to the subblocks. The possible partitions,

with indicated subdivisions and coding tree, are as follows.

---- Begin code block

typedef enum

mv_top_bottom, /*two pieces {0...7} and {8...15} */

mv_left_right, /*{0,1,4,5,8,9,12,13} and
{2,3,6,7,10,11,14,15} */

mv_quarters, /*{0,1,4,5}, {2,3,6,7}, {8,9,12,13},
{10,11,14,15} */

MV_16, [* every subblock gets its own vector
{0} ... {15} */
mv_num_partitions
}
MVpartition;
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const tree_index mvpartition_tree [2 * (mvnum_partition - 1)] =

{
-MV_16, 2, *MV_16 ="0"*/
-mv_quarters, 4, /* mv_quarters = "10" */
-mv_top_bottom, -mv_left_right /* top_bottom ="110",
left_right = "111" */
h

---- End code block

The partition is decoded using a fixed, constant probability table:

---- Begin code block

const Prob mvpartition_probs [mvnum_partition - 1] =
{110, 111, 150};

part = (MVpartition) treed_read(d, mvpartition_tree,
mvpartition_probs);

---- End code block

After the partition come two (for mv_top_bottom or mv_left_right),

four (for mv_quarters), or sixteen (for MV_16) subblock
inter-prediction modes. These modes occur in the order indicated by
the partition layouts (given as comments to the MVpartition enum) and
are coded as follows. (As was done for the macroblock-level modes,
we offset the mode enumeration so that a single variable may
unambiguously hold either an intra- or inter-subblock mode.)

Prior to decoding each subblock, a decoding tree context is chosen as
illustrated in the code snippet below. The context is based on the
immediate left and above subblock neighbors, and whether they are
equal, are zero, or a combination of those.

---- Begin code block
typedef enum

LEFT4x4 = num_intra_bmodes, /* use already-coded MV to

my left */
ABOVE4x4, /* use already-coded MV above me */
ZERO4x4, [* use zero MV */
NEW4x4, [* explicit offset from "best" */
num_sub_mv_ref
%
sub_mv_ref;

Bankoski, et al. Informational [Page 106]



RFC 6386 VP8 Data Format and Decoding Guide = November 2011

const tree_index sub_mv_ref tree [2 * (num_sub_mv_ref - 1)] =

{
-LEFT4X4, 2, /* LEFT ="0" */
-ABOVE4X4, 4, /* ABOVE ="10" */
-ZERO4X4, -NEW4X4 [* ZERO ="110", NEW = "111" */

5

/* Choose correct decoding tree context

* Function parameters are left subblock neighbor MV and above
* subblock neighbor MV */

int vp8_mvCont(MV *|, MV*a)

intlez = (I->row == 0 && I->col == 0); /* left neighbor
is zero */
int aez = (a->row == 0 && a->col == 0); /* above neighbor
is zero */
int lea = (I->row == a->row && I|->col == a->col); /* left
neighbor equals above neighbor */

if (lea && lez)
return SUBMVREF_LEFT_ABOVE_ZED; /* =4 */

if (lea)
return SUBMVREF_LEFT_ABOVE_SAME; /* =3 */

if (aez)
return SUBMVREF_ABOVE_ZED; /* =2 */

if (lez)
return SUBMVREF_LEFT_ZED; /* =1%/

return SUBMVREF_NORMAL,; /* =0 */
}

/* Constant probabilities and decoding procedure. */

const Prob sub_mv_ref_prob [5][num_sub_mv_ref - 1] ={
{147,136,18 },
{106,145,1 },
{179,121,1 },
{223,1 ,34},
{208,1 ,1}
2

sub_ref = (sub_mv_ref) treed_read(d, sub_mv_ref_tree,
sub_mv_ref_prob[context]);

---- End code block
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The first two sub-prediction modes simply copy the already-coded
motion vectors used by the blocks above and to the left of the
subblock at the upper left corner of the current subset (i.e.,
collection of subblocks being predicted). These prediction blocks
need not lie in the current macroblock and, if the current subset
lies at the top or left edges of the frame, need not lie in the

frame. In this latter case, their motion vectors are taken to be
zero, as are subblock motion vectors within an intra-predicted
macroblock. Also, to ensure the correctness of prediction within
this macroblock, all subblocks lying in an already-decoded subset of
the current macroblock must have their motion vectors set.

ZERO4x4 uses a zero motion vector and predicts the current subset
using the corresponding subset from the prediction frame.

NEW4x4 is exactly like NEWMV except that NEW4x4 is applied only to
the current subset. It is followed by a two-dimensional motion

vector offset (described in the next section) that is added to the

best vector returned by the earlier call to find_near_mvs to form the
motion vector in effect for the subset.

Parsing of both inter-prediction modes and motion vectors (described
next) can be found in the reference decoder file modemv.c
(Section 20.11).

17. Motion Vector Decoding

As discussed above, motion vectors appear in two places in the VP8
datastream: applied to whole macroblocks in NEWMV mode and applied to
subsets of macroblocks in NEW4x4 mode. The f